期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Salidroside attenuates oxygen and glucose deprivation-induced neuronal injury by inhibiting ferroptosis
1
作者 Ying-Zhi Li Ai-Ping Wu +2 位作者 Dan-Dan Wang Pan-Pan Yang Bin Sheng 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2023年第2期70-79,共10页
Objective: To evaluate the effect of salidroside on oxygen and glucose deprivation(OGD)-treated NT2 cells and its underlying mechanisms of action.Methods: Retinoic acid was used to induce the differentiation of NT2 ce... Objective: To evaluate the effect of salidroside on oxygen and glucose deprivation(OGD)-treated NT2 cells and its underlying mechanisms of action.Methods: Retinoic acid was used to induce the differentiation of NT2 cells into neurons. The effects of salidroside on survival, apoptosis, inflammatory response, and oxidative stress of neurons undergoing OGD were evaluated. Using precursor cells as controls, the effect of salidroside on the differentiation progression of OGDtreated cells was evaluated. In addition, the effect of erastin, a ferroptosis inducer, on NT2 cells was examined to investigate the underlying mechanisms of neuroprotective action of salidroside.Results: Salidroside alleviated the effects of OGD on neuronal survival, apoptosis, inflammation, and oxidative stress, and promoted NT2 cell differentiation. Moreover, salidroside prevented ferroptosis of OGD-treated cells, which was abolished following erastin treatment, indicating that ferroptosis mediated the regulatory pathway of salidroside.Conclusions: Salidroside attenuates OGD-induced neuronal injury by inhibiting ferroptosis and promotes neuronal differentiation. 展开更多
关键词 SALIDROSIDE Rhodiola rosea Ferroptosis Oxygen and glucose deprivation Neuronal differentiation Ischemic stroke
下载PDF
Establishment of oxygen glucose deprivation reperfusion model of senescent SH-SY5Y cells
2
作者 ZHANG Qiao-tian JIANG Chang-yue +3 位作者 ZHU GE Xiang-zhen LI De-li HU Wan-Xiang XIE Lu 《Journal of Hainan Medical University》 CAS 2023年第6期1-7,共7页
Obejective:To explore the establishment of an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells.Methods:SH-SY5Y cells were randomly divided into control(D-galactose 0 mmol/L group),D-galactose(25... Obejective:To explore the establishment of an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells.Methods:SH-SY5Y cells were randomly divided into control(D-galactose 0 mmol/L group),D-galactose(25 mmol/L,50 mmol/L,100 mmol/L,200 mmol/L,400 mmol/L)groups,and treated with corresponding concentrations of D-galactose for 48 h.The changes of cell morphology,β-galactosidase,the cell morphology,β-galactosidase activity by microscopic observation,cell proliferation rate by EdU kit and cell survival rate by CCK-8 assay were used to determine the decaying concentration of D-galactose and to establish the senescence model.The senescent SH-SY5Y cells were randomly divided into control group(oxygen glucose deprivation without treatment group),oxygen glucose deprivation treatment(0.5 h,1 h,1.5 h,2 h)group,followed by re-glucose reoxygenation for 24 h,and CCK-8 assay for the survival rate of senescent SH-SY5Y cells.Results:There were no significant changes in cell morphology and β-gal activity in the 25 mmol/L and 50 mmol/L groups compared with the control group(P>0.05),cytosolic hypertrophy was seen in the cells of the 100 mmol/L group,chromatin fixation in the cells of the 200 mmol/L group,and massive vacuolization in the cells of the 400 mmol/L group;the positive rate ofβ-galactosidase staining in the cells of the(100-400 mmol/L)group was significantly higher compared with the control group(P<0.05),with little difference between the 100 mmol/L and 200 mmol/L groups(P>0.05);the cell proliferation ability of the(100-400 mmol/L)group was significantly decreased in a concentration-dependent manner(P<0.05);the cell survival rate was decreased in a concentration-dependent manner(P<0.05),with IC_(50) between 100 mmol/L and 200 mmol/L.The survival of senescent SH-SY5Y cells showed a time-dependent decrease in oxygen-glucose deprivation(P<0.05),with an IC_(50) close to 1 h.Conclusion:D-gal concentration of 100 mmoL/L and 48 h of cell action could establish a survival rate of about 50%of senescent SH-SY5Y cells,and oxygen glucose deprivation of senescent SH-SY5Y cells for 1 h and reperfusion for 24 h could establish an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells with a survival rate close to 50%. 展开更多
关键词 Cerebral ischemia-reperfusion injury Oxygen glucose deprivation reperfusion AGING D-GALACTOSE SH-SY5Y cell
下载PDF
Selenocysteine antagonizes oxygen glucose deprivation-induced damage to hippocampal neurons 被引量:3
3
作者 Xian-Jun Wang Mei-Hong Wang +5 位作者 Xiao-Ting Fu Ya-Jun Hou Wang Chen Da-Chen Tian Su-Yun Bai Xiao-Yan Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1433-1439,共7页
Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essenti... Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essential trace dement, which is beneficial in the chemo- prevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S402, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspa se-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-medi- ated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons. 展开更多
关键词 SELENIUM SELENOCYSTEINE ischemic stroke oxygen glucose deprivation hippocampal neuron MITOCHONDRIA reaction oxygen species superoxide anion oxidative damage APOPTOSIS
下载PDF
Oxygen Glucose Deprivation Post-conditioning Protects Cortical Neurons against Oxygen-glucose Deprivation Injury: Role of HSP70 and Inhibition of Apoptosis 被引量:1
4
作者 赵建华 孟宪丽 +3 位作者 张健 李永丽 李月娟 樊哲铭 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2014年第1期18-22,共5页
In the present study, we examined the effect of oxygen glucose deprivation(OGD) post-conditioning(PostC) on neural cell apoptosis in OGD-PostC model and the protective effect on primary cortical neurons against OG... In the present study, we examined the effect of oxygen glucose deprivation(OGD) post-conditioning(PostC) on neural cell apoptosis in OGD-PostC model and the protective effect on primary cortical neurons against OGD injury in vitro. Four-h OGD was induced by OGD by using a specialized and humidified chamber. To initiate OGD, culture medium was replaced with de-oxygenated and glucose-free extracellular solution-Locke's medium. After OGD treatment for 4 h, cells were then allowed to recover for 6 h or 20 h. Then lactate dehydrogenase(LDH) release assay, Western blotting and flow cytometry were used to detect cell death, protein levels and apoptotic cells, respectively. For the PostC treatment, three cycles of 15-min OGD, followed by 15 min normal cultivation, were applied immediately after injurious 4-h OGD. Cells were then allowed to recover for 6 h or 20 h, and cell death was assessed by LDH release assay. Apoptotic cells were flow cytometrically evaluated after 4-h OGD, followed by re-oxygenation for 20 h(O4/R20). In addition, Western blotting was used to examine the expression of heat-shock protein 70(HSP70), Bcl-2 and Bax. The ratio of Bcl-2 expression was(0.44±0.08)% and(0.76±0.10)%, and that of Bax expression was(0.51±0.05)% and(0.39±0.04)%, and that of HSP70 was(0.42±0.031)% and(0.72±0.045)% respectively in OGD group and PostC group. After O4/R6, the rate of neuron death in PostC group and OGD groups was(28.96±3.03)% and(37.02±4.47)%, respectively. Therefore, the PostC treatment could up-regulate the expression of HSP70 and Bcl-2, but down-regulate Bax expression. As compared with OGD group, OGD-induced neuron death and apoptosis were significantly decreased in PostC group(P0.05). These findings suggest that PostC inhibited OGD-induced neuron death. This neuro-protective effect is likely achieved by anti-apoptotic mechanisms and is associated with over-expression of HSP70. 展开更多
关键词 oxygen glucose deprivation POST-CONDITIONING heat-shock protein APOPTOSIS
下载PDF
Inhibition of Calpain on Oxygen Glucose Deprivation-induced RGC-5 Necroptosis 被引量:2
5
作者 陈爽 闫杰 +7 位作者 邓海霄 龙玲玲 胡勇军 王咪 尚蕾 陈旦 黄菊芳 熊鲲 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第5期639-645,共7页
The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5(RGC-5) necroptosis following oxygen glucose deprivation(OGD). RGC-5 cells were cultured in Dulbecco's-mo... The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5(RGC-5) necroptosis following oxygen glucose deprivation(OGD). RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8-h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. The calpain expression was detected by Western blotting and immunofluorescence staining. The calpain activity was tested by activity detection kit. Flow cytometry was used to detect the effect of calpain on RGC-5 necroptosis following OGD with or without N-acetyl-leucyl-leucyl-norleucinal(ALLN) pre-treatment. Western blot was used to detect the protein level of truncated apoptosis inducing factor(t AIF) in RGC-5 cells following OGD. The results showed that there was an up-regulation of the calpain expression and activity following OGD. Upon adding ALLN, the calpain activity was inhibited and t AIF was reduced following OGD along with the decreased number of RGC-5 necroptosis. In conclusion, calpain was involved in OGD-induced RGC-5 necroptosis with the increased expression of its downstream molecule t AIF. 展开更多
关键词 calpain Calpain glucose deprivation Inhibition cytometry inhibited downstream ganglion staining
下载PDF
Effects of isoflurane and sevoflurane postconditioning and changes in JNK1/2 pathway activity on rat brain slices subjected to oxygen and glucose deprivation in vitro
6
作者 Sheng Wang Zhigang Dai +4 位作者 Xiwei Dong Suxiang Guo Yang Liu Shan Jiang Zhiping Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第14期1091-1096,共6页
Recent research shows that the JNK1/2 signaling pathway plays a neuroprotective role against ischemia-reperfusion injury by cross-talk with other pathways.The present study investigated the effects of isoflurane and s... Recent research shows that the JNK1/2 signaling pathway plays a neuroprotective role against ischemia-reperfusion injury by cross-talk with other pathways.The present study investigated the effects of isoflurane and sevoflurane postconditioning on JNK1/2 pathway activity and neuronal cell viability after oxygen and glucose deprivation injury in hippocampal slices in vitro.Techniques used included population spike analysis,propidium iodide fluorescent staining,western blot assay,and the use of JNK1/2-specific pharmacological tools such as anisomycin (agonist) and SP600125 (inhibitor).We found that both isoflurane and sevoflurane inhibited JNK pathway activity and had neuroprotective effects against oxygen and glucose deprivation injury in slices of rat hippocampus in vitro.Postconditioning with volatile anesthetics exerted neuroprotective effects on nerve cells and preserved the function of the CA1 region by inhibiting JNK1/2 phosphorylation.This suppression of JNK1/2 activity could underlie the observed synergistic neuroprotective effect produced by volatile anesthetic postconditioning. 展开更多
关键词 population spikes HIPPOCAMPUS oxygen and glucose deprivation volatile anesthetic POSTCONDITIONING JNK1/2 neural regeneration
下载PDF
Dehydrocostuslactone protects against oxygen-glucose deprivation/reperfusion-induced injury by inhibiting autophagy and apoptosis in PC12 cells
7
作者 MA Hui-xia HOU Fan +5 位作者 ZHANG Zheng-jun CHEN Ai-ling ZHU Ya-fei Li Ting-ting ZHANG Xin-hui ZHAO Qi-peng 《中国药理学与毒理学杂志》 CAS 北大核心 2019年第9期692-693,共2页
OBJECTIVE TO investigate the neural protection of dehydrocostus lactone(DHL)against neuronal injury induced by oxygen and glucose deprivation/reperfusion(OGD/R)in differentiated PC12 cells.METHODS We used a cellular m... OBJECTIVE TO investigate the neural protection of dehydrocostus lactone(DHL)against neuronal injury induced by oxygen and glucose deprivation/reperfusion(OGD/R)in differentiated PC12 cells.METHODS We used a cellular model of 2 h of OGD and 24 h of reperfusion to mimic cerebral ischemia-reperfusion injury.Cell viability was used to reflect the degree of OGD/R-induced injury.Cells were treated with DHL during the reperfusion phase.Cell Counting Kit(CCK-8)and LDH assays were performed to determine the optimal dose of DHL and cell viability.Flow cytometry analysis and Monodansylcadaverine(MDC)staining were then conducted to detect apoptosis rate and autophagosome formation after OGD/R in PC12 cells.Immunofluorescence and Western blotting analyses were used to detect the expres⁃sion of proteins associated with autophagy and apoptosis.RESULTS OGD/R significantly decreased cell viability and increased apoptosis rate.The expression levels of autophagy-related proteins,namely,LC3 and Beclin-1,and apoptosisrelated proteins,namely,Bax and caspase-3 increased,but that of the anti-apoptosis Bcl-2 protein decreased.However,DHL attenuated OGD/R-induced neuronal injury through inhibition of apoptosis and autophagy properties by modulating au⁃tophagy-associated proteins(LC3 and Beclin-1)and apoptosis-modulating proteins(caspase-3 and Bcl-2/Bax).CONCLU⁃SION Our data provide an evidence for the neuroprotective effect of DHL against ischemic neuronal injury.Hence,DHL could be a promising candidate for treatment of ischemic stroke. 展开更多
关键词 dehydrocostuslactone oxygen and glucose deprivation/reperfusion APOPTOSIS AUTOPHAGY
下载PDF
Dexmedetomidine alleviates oxygen and glucose deprivation-induced apoptosis in mesenchymal stem cell via downregulation of MKP-1
8
作者 RUICONG GUAN KUAN ZENG +9 位作者 MINNAN GAO JIANFEN LI HUIQI JIANG LU ZHANG JINGWEN LI BIN ZHANG YUQIANG LIU ZHUXUAN LIU DIAN WANG YANQI YANG 《BIOCELL》 SCIE 2022年第11期2455-2463,共9页
Bone marrow mesenchymal stem cell(MSC)-based therapy is a novel candidate for heart repair.But ischemiareperfusion injury leads to low viability of MSC.Dexmedetomidine(Dex)has been found to protect neurons against isc... Bone marrow mesenchymal stem cell(MSC)-based therapy is a novel candidate for heart repair.But ischemiareperfusion injury leads to low viability of MSC.Dexmedetomidine(Dex)has been found to protect neurons against ischemia-reperfusion injury.It remains unknown if Dex could increase the viability of MSCs under ischemia.The present study is to observe the potential protective effect of Dex on MSCs under ischemia and its underlying mechanisms.Specific mRNAs related to myocardial ischemia in the GEO database were selected from the mRNA profiles assessed in a previous study using microarray.The most dysregulated mRNAs of the specific ones from the above study were subject to bioinformatics analysis at our laboratory.These dysregulated mRNAs possibly regulated apoptosis of cardiomyocytes and were validated in vitro for their protective effect on MSCs under ischemia.MSCs were pre-treated with Dex at 10μM concentration for 24 h under oxygen-glucose deprivation(OGD).Flow cytometry and TUNEL assay were carried out to detect apoptosis in Dex-pretreated MSCs under OGD.The relative expressions of mitogen-activated protein kinase phosphatase 1(MKP-1)and related genes were detected by quantitative polymerase chain reaction and western blotting.Microarray data analysis revealed that Dex regulates MAPK phosphatase activity.Dex significantly reduced in vitro apoptosis of MSCs under OGD,which suppressed the synthesis level of Beclin1 and light chain 3 proteins.Dex down-regulated MKP-1 expression and attenuated an OGDinduced change in the mitogen activated protein kinase 3(MAPK3)signaling pathway.Dex increases the viability of MSC and improves its tolerance to OGD in association with the MKP-1 signaling pathway,thus suggesting the potential of Dex as a novel strategy for promoting MSCs efficacy under ischemia. 展开更多
关键词 DEXMEDETOMIDINE HIF-1Α MKP-1 Oxygen and glucose deprivation
下载PDF
Neuroprotective effects of salvianolic acid B against oxygen-glucose deprivation/reperfusion damage in primary rat cortical neurons 被引量:30
9
作者 WANG Yun JIANG Yu-feng +2 位作者 HUANG Qi-fu GE Gui-ling CUI Wei 《Chinese Medical Journal》 SCIE CAS CSCD 2010年第24期3612-3619,共8页
Background Cerebral ischemia-reperfusion injury is the main reason for the loss of neurons in the ischemic cerebrovascular disease. Therefore, to deeply understand its pathogenesis and find a new target is the key iss... Background Cerebral ischemia-reperfusion injury is the main reason for the loss of neurons in the ischemic cerebrovascular disease. Therefore, to deeply understand its pathogenesis and find a new target is the key issue to be solved. This research aimed to investigate the neuroprotective effects of salvianolic acid B (SalB) against oxygen-glucose deprivation/reperfusion (OGD/RP) damage in primary rat cortical neurons.Methods The primary cultures of neonatal Wister rats were randomly divided into the control group, the OGD/RP group and the SalB-treatment group (10 mg/L). The cell model was established by depriving of oxygen and glucose for 3 hours and reperfusion for 3 hours and 24 hours, respectively. The neuron viability was determined by MTT assay. The level of cellular reactive oxygen species (ROS) was detected by fluorescent labeling method and spin trapping technique respectively. The activities of neuronal Mn-superoxide dismutase (Mn-SOD), catalase (CAT) and glutathione peroxidase (GSH-PX) were assayed by chromatometry. The mitochondria membrane potential (△ψm) was quantitatively analyzed by flow cytometry. The release rate of cytochrome c was detected by Western blotting. The neuronal ultrastructure was observed by transmission electron microscopy. Statistical significance was evaluated by analysis of variance (ANOVA)followed by Student-Newman-Keuls test.Results OGD/RP increased the level of cellular ROS, but decreased the cell viability and the activities of Mn-SOD, CAT and GSH-PX; SalB treatment significantly reduced the level of ROS (P <0.05); and enhanced the cell viability (P <0.05)and the activities of these antioxidases (P <0.05). Additionally, OGD/RP induced the fluorescence value of △ψm to diminish and the release rate of cytochrome c to rise notably; SalB markedly elevated the level of △ψm (P <0.01) and depressed the release rate of cytochrome c (P <0.05); it also ameliorated the neuronal morphological injury.Conclusion The neuroprotection of SalB may be attributed to the elimination of ROS and the inhibition of apoptosis. 展开更多
关键词 salvianolic acid B NEURONS oxygen/glucose deprivation and reperfusion reactive oxygen species MITOCHONDRIA APOPTOSIS
原文传递
Activation of the wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions 被引量:7
10
作者 Xingyong Chen Nannan Yao +4 位作者 Yanguang Mao Dongyun Xiao Yiyi Huang Xu Zhang Yinzhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1541-1547,共7页
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok... Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury. 展开更多
关键词 blood-brain barrier CYP1B1 oxidative stress oxygen glucose deprivation/reoxygenation tight junction vascular endothelial cells Wnt/β-catenin pathway β-catenin
下载PDF
Adenosine A_(2A)receptor blockade attenuates excitotoxicity in rat striatal medium spiny neurons during an ischemic-like insult
11
作者 Elisabetta Coppi Federica Cherchi Alasdair J.Gibb 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期255-257,共3页
During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membra... During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membrane ion gradients,occurs in vivo or in vitro during an energy failure.The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors,namely:A_(1),A_(2A),A_(2B),and A_(3).The A_(2A)receptor subtype is highly expressed in striatal medium spiny neurons,which are particularly susceptible to ischemic damage.Evidence indicates that the A2Areceptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours.We recently added new knowledge to the mechanisms by which the adenosine A2Areceptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation.We demonstrated that the selective block of A2Areceptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+channel modulation and a presynaptic inhibition of glutamate release by the A2Areceptor antagonist.The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2Areceptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia. 展开更多
关键词 adenosine A_(2A)receptors anoxic depolarization brain ischemia glutamate excitotoxicity medium spiny neurons oxygen and glucose deprivation
下载PDF
Scutellarin protects oxygen/glucose-deprived astrocytes and reduces focal cerebral ischemic injury 被引量:17
12
作者 Jing-Bo Sun Yan Li +11 位作者 Ye-Feng Cai Yan Huang Shu Liu Patrick KK Yeung Min-Zhen Deng Guang-Shun Sun Prince LM Zilundu Qian-Sheng Hu Rui-Xin An Li-Hua Zhou Li-Xin Wang Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1396-1407,共12页
Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxida- tive effects and has been used to treat cardiovascular and cerebrovascular... Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxida- tive effects and has been used to treat cardiovascular and cerebrovascular diseases in China. However, the mechanisms by which scutellarin mediates neuroprotection in cerebral ischemia remain unclear. The interaction between scutellarin and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) was assessed by molecular docking study, which showed that scutellarin selectively binds to NOX2 with high affinity. Cultures of primary astrocytes isolated from the cerebral cortex of neonatal Sprague-Dawley rats were pretreated with 2, 10 or 50 μM scutellarin for 30 minutes. The astrocytes were then subjected to oxygen/glucose deprivation by incubation for 2 hours in glucose-free Dulbecco's modified Eagle's medium in a 95% N2/5% CO2 incubator, followed by simulated reperfusion for 22 hours. Cell viability was assessed by cell counting kit-8 assay. Expression levels of NOX2, connexin 43 and caspase-3 were assessed by western blot assay. Reactive oxygen species were measured spectrophotometrically. Pretreatment with 10 or 50 μM scutellarin substantially increased viability, reduced the expression of NOX2 and caspase-3, increased the expression of connexin 43, and diminished the levels of reactive oxygen, species in astrocytes subjected to ischemia-'reperfusion. We also assessed the effects of scutellarin in vivo in the rat transient middle cerebral artery occlusion model of cerebral ischemia-reperfusion injury. Rats were given intraperitoneal injection of 100 mg/kg scutellarin 2 hours before surgery. The Bederson scale was used to assess neurological deficit, and 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct size. Western blot assay was used to assess expression of NOX2 and connexin 43 in brain tissue. Enzyme-linked immunosorbent assay was used to detect 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosin (3-NT) in brain tissue. Immunofluorescence double staining was used to determine the co-expression of caspase-3 and NeuN. Pretreatment with scutellarin im- proved the neurological function of rats with focal cerebral ischemia, reduced infarct size, diminished the expression of NOX2, reduced levels of 8-OHdG, 4-HNE and 3-NT, and reduced the number of cells co-expressing caspase-3 and NeuN in the injured brain tissue. Furthermore, we examined the effect of the NOX2 inhibitor apocynin. Apocynin substantially increased connexin 43 expression in vivo and in vitro. Collectively, our findings suggest that scutellarin protects against ischemic injury in vitro and in vivo by downregulating NOX2, upregulating connexin 43, decreasing oxidative damage, and reducing apoptotic cell death. 展开更多
关键词 nerve regeneration SCUTELLARIN cerebral ischemic injury oxygen glucose deprivation/reoxygenation nicotinamide adenine dinucleotide phosphate oxidase 2 reactive oxygen species connexin 43 neural regeneration
下载PDF
Overexpression of mitogen-activated protein kinase phosphatase-1 in endothelial cells reduces blood-brain barrier injury in a mouse model of ischemic stroke 被引量:2
13
作者 Xiu-De Qin Tai-Qin Yang +6 位作者 Jing-Hui Zeng Hao-Bin Cai Shao-Hua Qi Jian-Jun Jiang Ying Cheng Long-Sheng Xu Fan Bu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1743-1749,共7页
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le... Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis. 展开更多
关键词 blood-brain barrier brain injury cerebral ischemia endothelial cells extracellular signal-regulated kinase 1/2 functional recovery mitogenactivated protein kinase phosphatase 1 OCCLUDIN oxygen and glucose deprivation transient middle cerebral artery occlusion
下载PDF
Ginsenoside Rb1 improves energy metabolism after spinal cord injury 被引量:1
14
作者 Shan Wen Zhi-Ru Zou +4 位作者 Shuai Cheng Hui Guo Heng-Shuo Hu Fan-Zhuo Zeng Xi-Fan Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1332-1338,共7页
Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases.Studies have shown that ginsenoside Rb1 has neurotrophic and ne... Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases.Studies have shown that ginsenoside Rb1 has neurotrophic and neuroprotective effects.However,whether it influences energy metabolism after spinal cord injury remains unclear.In this study,we treated mouse and cell models of spinal cord injury with ginsenoside Rb1.We found that ginsenoside Rb1 remarkably inhibited neuronal oxidative stress,protected mitochondria,promoted neuronal metabolic reprogramming,increased glycolytic activity and ATP production,and promoted the survival of motor neurons in the anterior horn and the recovery of motor function in the hind limb.Because sirtuin 3 regulates glycolysis and oxidative stress,mouse and cell models of spinal cord injury were treated with the sirtuin 3 inhibitor 3-TYP.When Sirt3 expression was suppressed,we found that the therapeutic effects of ginsenoside Rb1 on spinal cord injury were remarkably inhibited.Therefore,ginsenoside Rb1 is considered a potential drug for the treatment of spinal cord injury,and its therapeutic effects are closely related to sirtuin 3. 展开更多
关键词 axon growth ginsenoside Rb1 GLYCOLYSIS metabolic reprogramming MITOCHONDRION NEUROPROTECTION oxidative stress oxygen and glucose deprivation Sirt3 spinal cord injury
下载PDF
Label-free quantitative proteomics analysis models in vivo and in vitro reveal key proteins and potential roles in sciatic nerve injury
15
作者 YANG GU MINGGUANG BI +2 位作者 DEHUI CHEN NING NI JIANMING CHEN 《BIOCELL》 SCIE 2023年第9期2069-2080,共12页
Background:The underlying mechanism of sciatic nerve injury(SNI)is a common motor functional disorder,necessitates further research.Methods:A rat model of SNI was established,with the injury group subjected to compres... Background:The underlying mechanism of sciatic nerve injury(SNI)is a common motor functional disorder,necessitates further research.Methods:A rat model of SNI was established,with the injury group subjected to compressive injury of the right sciatic nerve exposed at the midpoint of the thigh and the sham surgery group undergoing the same surgical procedure.An oxygen-glucose deprivation model was employed to simulate in vitro SNI in PC12 cells.Following data acquisition and quality control,differentially expressed proteins(DEPs)in each model were identified through differential analysis,and enrichment analysis was used to explore the potential functions and pathways of the DEPs.Venn diagrams were drawn,and DEPs from both in vivo and in vitro SNI models were imported into the STRING database to construct a protein-protein interaction network and screen for hub proteins.Results:After the peptide segments obtained from rat nerve blockade and PC12 cells met quality requirements,258 DEPs were identified in rat nerve samples,and 119 DEPs were screened in PC12 cells.Enrichment analysis revealed that DEPs in the rat model were predominantly concentrated in biological functions such as myogenic cell proliferation and signaling related to lipid and energy metabolism.DEPs in the in vitro model were mainly enriched in biological processes such as phagocytosis and were associated with lipid transport and metabolism.Two hub proteins,amyloid precursor protein(APP)and fibronectin 1(FN1),were identified through MCC,MCODE,and Degree scoring.Both PC12 cells and external validation sets showed relatively higher expression of APP and FN1 in injured samples.Results of gene set enrichment analysis indicated that these two proteins were associated with metabolic pathways,such as biosynthesis of glycosaminoglycan chondroitin sulfate and biosynthesis of unsaturated fatty acids.Conclusion:APP and FN1 are potential key molecules involved in SNI and are associated with various metabolic pathways in nerve repair.These findings provide a theoretical basis for the development of therapeutic targets for SNI. 展开更多
关键词 Oxygen glucose deprivation PROTEOMICS Sciatic nerve injury Peripheral nerve injury
下载PDF
Autophagy and inflammation in ischemic stroke 被引量:103
16
作者 Yun Mo Yin-Yi Sun Kang-Yong Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1388-1396,共9页
Appropriate autophagy has protective effects on ischemic nerve tissue,while excessive autophagy may cause cell death.The inflammatory response plays an important role in the survival of nerve cells and the recovery of... Appropriate autophagy has protective effects on ischemic nerve tissue,while excessive autophagy may cause cell death.The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia.Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke.This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows.(1)Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR,the AMPK pathway,and inhibition of inflammasome activation.(2)Activation of inflammation triggers the formation of autophagosomes,and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1.Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK,reducing the flux and autophagy level,thereby inducing inflammatory activity.(3)By blocking the activation of autophagy,the activation of inflammasomes can alleviate cerebral ischemic injury.Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway,which is beneficial to the recovery of neural tissue after ischemia.Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway.These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke. 展开更多
关键词 AUTOPHAGY cerebral ischemia function INFLAMMASOME INFLAMMATION ischemia/refusion ischemic stroke MACROAUTOPHAGY NEUROINFLAMMATION oxygen glucose deprivation
下载PDF
Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies 被引量:25
17
作者 Wei-Tao Yan Yan-Di Yang +6 位作者 Xi-Min Hu Wen-Ya Ning Lyu-Shuang Liao Shuang Lu Wen-Juan Zhao Qi Zhang Kun Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第8期1761-1768,共8页
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all... Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all the components of PANoptosis to be regulated simultaneously.PANoptosis provides a new way to study the regulation of cell death,in that different types of cell death may be regulated at the same time.To test whether PANoptosis exists in diseases other than infectious diseases,we chose cerebral ischemia/reperfusion injury as the research model,collected articles researching cerebral ischemia/reperfusion from three major databases,obtained the original research data from these articles by bibliometrics,data mining and other methods,then integrated and analyzed these data.We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion.In the cell model simulating ischemic brain injury,pyroptosis,apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons.Pyroptosis,apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury.This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases. 展开更多
关键词 APOPTOSIS brain central nervous system ISCHEMIA/REPERFUSION middle cerebral artery occlusion NECROPTOSIS oxygen and glucose deprivation PANoptosis PYROPTOSIS regulated cell death
下载PDF
Exosomes derived from human induced pluripotent stem cell-derived neural progenitor cells protect neuronal function under ischemic conditions 被引量:4
18
作者 Wen-Yu Li Qiong-Bin Zhu +3 位作者 Lu-Ya Jin Yi Yang Xiao-Yan Xu Xing-Yue Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第10期2064-2070,共7页
Compared with other stem cells,human induced pluripotent stem cells-derived neural progenitor cells(iPSC-NPCs)are more similar to cortical neurons in morphology and immunohistochemistry.Thus,they have greater potentia... Compared with other stem cells,human induced pluripotent stem cells-derived neural progenitor cells(iPSC-NPCs)are more similar to cortical neurons in morphology and immunohistochemistry.Thus,they have greater potential for promoting the survival and growth of neurons and alleviating the proliferation of astrocytes.Transplantation of stem cell exosomes and stem cells themselves have both been shown to effectively repair nerve injury.However,there is no study on the protective effects of exosomes derived from iPSC-NPCs on oxygen and glucose deprived neurons.In this study,we established an oxygen-glucose deprivation model in embryonic cortical neurons of the rat by culturing the neurons in an atmosphere of 95%N2 and 5%CO2 for 1 hour and then treated them with iPSC-NPC-derived exosomes for 30 minutes.Our results showed that iPSC-NPC-derived exosomes increased the survival of oxygen-and glucose-deprived neurons and the level of brain-derived neurotrophic factor in the culture medium.Additionally,it attenuated oxygen and glucose deprivation-induced changes in the expression of the PTEN/AKT signaling pathway as well as synaptic plasticity-related proteins in the neurons.Further,it increased the length of the longest neurite in the oxygen-and glucose-deprived neurons.These findings validate the hypothesis that exosomes from iPSCNPCs exhibit a neuroprotective effect on oxygen-and glucose-deprived neurons by regulating the PTEN/AKT signaling pathway and neurite outgrowth.This study was approved by the Animal Ethics Committee of Sir Run Run Shaw Hospital,School of Medicine,Zhejiang University,China(approval No.SRRSH20191010)on October 10,2019. 展开更多
关键词 AKT cortical neurons EXOSOME ISCHEMIA neural progenitor cells neuronal protection oxygen and glucose deprivation pluripotent stem cells PTEN signaling pathway
下载PDF
Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury 被引量:4
19
作者 Tian-Hao Li Hong-Wei Sun +5 位作者 Lai-Jun Song Bo Yang Peng Zhang Dong-Ming Yan Xian-Zhi Liu Yu-Ru Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期824-831,共8页
Severe cerebral ischemia/reperfusion injury has been shown to induce high-level autophagy and neuronal death.Therefore,it is extremely important to search for a target that inhibits autophagy activation.Long non-codin... Severe cerebral ischemia/reperfusion injury has been shown to induce high-level autophagy and neuronal death.Therefore,it is extremely important to search for a target that inhibits autophagy activation.Long non-coding RNA MEG3 participates in autophagy.However,it remains unclear whether it can be targeted to regulate cerebral ischemia/reperfusion injury.Our results revealed that in oxygen and glucose deprivation/reoxygenation-treated HT22 cells,MEG3 expression was obviously upregulated,and autophagy was increased,while knockdown of MEG3 expression greatly reduced autophagy.Furthermore,MEG3 bound mi R-181 c-5 p and inhibited its expression,while mi R-181 c-5 p bound to autophagy-related gene ATG7 and inhibited its expression.Further experiments revealed that mir-181 c-5 p overexpression reversed the effect of MEG3 on autophagy and ATG7 expression in HT22 cells subjected to oxygen and glucose deprivation/reoxygenation.In vivo experiments revealed that MEG3 knockdown suppressed autophagy,infarct volume and behavioral deficits in cerebral ischemia/reperfusion mice.These findings suggest that MEG3 knockdown inhibited autophagy and alleviated cerebral ischemia/reperfusion injury through the mi R-181 c-5 p/ATG7 signaling pathway.Therefore,MEG3 can be considered as an intervention target for the treatment of cerebral ischemia/reperfusion injury.This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Zhengzhou University,China(approval No.XF20190538)on January 4,2019. 展开更多
关键词 ATG7 AUTOPHAGY cerebral infarction cerebral ischemia/reperfusion injury long non-coding RNA miR-181c-5p NEURON oxygen and glucose deprivation/reoxygenation
下载PDF
Inhibition of the immunoproteasome LMP_(2) ameliorates ischemia/hypoxia-induced blood–brain barrier injury through the Wnt/β-catenin signalling pathway 被引量:3
20
作者 Xing-Yong Chen Shao-Fen Wan +4 位作者 Nan-Nan Yao Ze-Jing Lin Yan-Guang Mao Xiao-Hua Yu Yin-Zhou Wang 《Military Medical Research》 SCIE CAS CSCD 2022年第4期404-418,共15页
Background:Disruption of the blood–brain barrier(BBB)after a stroke can lead to brain injury and neurological impairment.Previous work confirmed the involvement of the immunoproteasome subunit of low molecular mass p... Background:Disruption of the blood–brain barrier(BBB)after a stroke can lead to brain injury and neurological impairment.Previous work confirmed the involvement of the immunoproteasome subunit of low molecular mass peptide 2(LMP2)in the pathophysiology of ischemia stroke.However,the relationship between the immunoproteasome LMP2 and the BBB remains unclear.Methods:Adult male Sprague–Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion(MCAO/R).Three days before MCAO,the rats were treated with lentivirus-mediated LMP2 shRNA preparations by stereotactical injection into the ipsilateral hemispheric region.The rat brain microvascular endothelial cell(RBMVEC)line was exposed to oxygen–glucose deprivation/reperfusion(OGD/R)to mimic ischemic conditions in vitro.The RNA interference-mediated knockdown of LMP2 orβ-catenin was analysed in vivo and in vitro.Analysis of the quantity of extravasated Evans blue(EB)and cerebral fluorescent angiography were performed to evaluate the integrity of the BBB.Immunofluorescence and Western blotting were employed to detect the expression of target proteins.Cell migration was evaluated using a scratch migration assay.The results of immunofluorescence,Western blotting and cell migration were quantified using the software ImageJ(Version 1.53).Parametric data from different groups were compared using one-way ANOVA followed by the least significant difference(LSD)test.Results:Cerebral ischemia led to lower levels of structural components of the BBB such as tight junction proteins[occludin,claudin-1 and zonula occludens(ZO-1)]in the MCAO/R group compared with the sham group(P<0.001).However,inhibition of the immunoproteasome LMP2 restored the expression of these proteins,resulting in higher levels of occludin,claudin-1 and ZO-1 in the LMP2-shRNA group compared with the control-shRNA group(P<0.001).In addition,inhibition of the immunoproteasome LMP2 contributed to higher microvascular density and decreased BBB permeability[e.g.,the quantity of extravasated EB:LMP2-shRNA group(58.54±7.37)μg/g vs.control-shRNA group(103.74±4.32)μg/g,P<0.001],and promoted the upregulation of Wnt-3a andβ-catenin proteins in rats following MCAO/R.In vitro experiments,OGD/R induced marked upregulation of LMP2,proapoptotic protein Bax and cleaved caspase-3,and downregulation of occludin,claudin-1,ZO-1 and Bcl-2,as well as inhibition of the Wnt/β-catenin pathway Wnt-3a andβ-catenin proteins in RBMVECs,compared with the control group under normal culture conditions(P<0.001).However,silencing of LMP2 gene expression reversed these protein changes and promoted proliferation and migration of RBMVECs following OGD/R.Silencing ofβ-catenin by transfection of RBMVECs withβ-catenin-si RNA aggravated the downregulation of tight junction proteins,and reduced the proliferation and migration of RBMVECs following OGD/R,compared with the control-siRNA group(P<0.001).LMP2-si RNA andβ-catenin-si RNA co-transfection partly counteracted the beneficial effects of silencing LMP2-siRNA on the levels of tight junction proteins in RBMVECs exposed to OGD/R.Conclusions:This study suggests that inhibition of the immunoproteasome LMP2 ameliorates ischemia/hypoxia induced BBB injury,and that the molecular mechanism involves the immunoproteasome-regulated activation of the Wnt/β-catenin signalling pathway under ischemic conditions. 展开更多
关键词 IMMUNOPROTEASOME Blood–brain barrier Wnt/β-catenin pathway Oxygen–glucose deprivation/reperfusion Cerebral ischemia
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部