期刊文献+
共找到1,676篇文章
< 1 2 84 >
每页显示 20 50 100
Activation of the wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions 被引量:9
1
作者 Xingyong Chen Nannan Yao +4 位作者 Yanguang Mao Dongyun Xiao Yiyi Huang Xu Zhang Yinzhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1541-1547,共7页
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok... Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury. 展开更多
关键词 blood-brain barrier CYP1B1 oxidative stress oxygen glucose deprivation/reoxygenation tight junction vascular endothelial cells Wnt/β-catenin pathway β-catenin
下载PDF
Lactate metabolism in neurodegenerative diseases 被引量:5
2
作者 Chaoguang Yang Rui-Yuan Pan +1 位作者 Fangxia Guan Zengqiang Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期69-74,共6页
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin... Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research. 展开更多
关键词 Alzheimer's disease Astrocyte-Neuron Lactate Shuttle brain central nervous system glucose metabolism GLYCOLYSIS NEUROINFLAMMATION Parkinson's disease protein lactylation signaling molecule
下载PDF
Nutrition interventions and clinical outcomes of pregnant women with gestational diabetes mellitus: More than meets the eye 被引量:2
3
作者 Sony Sinha Prateek Nishant +2 位作者 Ranjeet Kumar Sinha Arvind Kumar Morya Ripunjay Prasad 《World Journal of Diabetes》 SCIE 2024年第1期126-128,共3页
In the retrospective study by Luo et al regarding clinical outcomes in gestational diabetes mellitus(GDM),the results are statistically significant in favour of the benefits of individualized nutrition interventions e... In the retrospective study by Luo et al regarding clinical outcomes in gestational diabetes mellitus(GDM),the results are statistically significant in favour of the benefits of individualized nutrition interventions enumerated therein.The study has provided important evidence to improve maternal and child health in the Asian population.The methods,however,appear to have considerable limi-tations,wherein the time point of diagnosis of GDM,severity of GDM,selection bias,compliance to therapy,important maternal covariates,observable microvascular abnormalities and the confounding effect of added insulin have not been considered.We have provided suggestions to improve the external validity of the study,including the use of Equator Network reporting guidelines and inclusion of overweight and obese patients in future studies. 展开更多
关键词 Glucose intolerance HYPERGLYCEMIA OBESITY PREGNANCY Research methodology
下载PDF
Sodium-dependent glucose transporter 2 inhibitors effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure 被引量:3
4
作者 Petra Grubić Rotkvić Luka Rotkvić +1 位作者 Ana Đuzel Čokljat Maja Cigrovski Berković 《World Journal of Cardiology》 2024年第8期448-457,共10页
BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions... BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions of their mechanism of action.We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy.Two groups of patients were included in the study:the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control.AIM To evaluate the outcomes regarding natriuretic peptide,oxidative stress,inflammation,blood pressure,heart rate,cardiac function,and body weight.METHODS The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain(GLS),N-terminal pro-brain natriuretic peptide,myeloperoxidase(MPO),high-sensitivity C-reactive protein(hsCRP),and systolic and diastolic blood pressure.To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up,a rise in stroke volume index,body mass index(BMI)decrease,and lack of heart rate increase,linear regression analysis was performed.RESULTS There was a greater reduction of MPO,hsCRP,GLS,and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up.Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI,while the predictor of stroke volume index increase was SGLT2i therapy itself.CONCLUSION SGLT2i affect body composition,reduce cardiac load,improve diastolic/systolic function,and attenuate the sympathetic response.Glycemic control contributes to the improvement of heart function,blood pressure control,oxidative stress,and reduction in inflammation. 展开更多
关键词 Sodium-dependent glucose transporter 2 inhibitors Dipeptidyl peptidase-4 inhibitors Type 2 diabetes mellitus Heart failure Diabetic cardiomyopathy Cardiovascular disease
下载PDF
Body composition and metabolic syndrome in patients with type 1 diabetes 被引量:2
5
作者 Qiong Zeng Xiao-Jing Chen +3 位作者 Yi-Ting He Ze-Ming Ma Yi-Xi Wu Kun Lin 《World Journal of Diabetes》 SCIE 2024年第1期81-91,共11页
BACKGROUND In recent years,the prevalence of obesity and metabolic syndrome in type 1 diabetes(T1DM)patients has gradually increased.Insulin resistance in T1DM deserves attention.It is necessary to clarify the relatio... BACKGROUND In recent years,the prevalence of obesity and metabolic syndrome in type 1 diabetes(T1DM)patients has gradually increased.Insulin resistance in T1DM deserves attention.It is necessary to clarify the relationship between body composition,metabolic syndrome and insulin resistance in T1DM to guide clinical treatment and intervention.AIM To assess body composition(BC)in T1DM patients and evaluate the relationship between BC,metabolic syndrome(MS),and insulin resistance in these indi-viduals.METHODS A total of 101 subjects with T1DM,aged 10 years or older,and with a disease duration of over 1 year were included.Bioelectrical impedance analysis using the Tsinghua-Tongfang BC Analyzer BCA-1B was employed to measure various BC parameters.Clinical and laboratory data were collected,and insulin resistance was calculated using the estimated glucose disposal rate(eGDR).RESULTS MS was diagnosed in 16/101 patients(15.84%),overweight in 16/101 patients(15.84%),obesity in 4/101(3.96%),hypertension in 34/101(33.66%%)and dyslip-idemia in 16/101 patients(15.84%).Visceral fat index(VFI)and trunk fat mass were significantly and negatively correlated with eGDR(both P<0.001).Female patients exhibited higher body fat percentage and visceral fat ratio compared to male patients.Binary logistic regression analysis revealed that significant factors for MS included eGDR[P=0.017,odds ratio(OR)=0.109],VFI(P=0.030,OR=3.529),and a family history of diabetes(P=0.004,OR=0.228).Significant factors for hypertension included eGDR(P<0.001,OR=0.488)and skeletal muscle mass(P=0.003,OR=1.111).Significant factors for dyslipidemia included trunk fat mass(P=0.033,OR=1.202)and eGDR(P=0.037,OR=0.708).CONCLUSION Visceral fat was found to be a superior predictor of MS compared to conventional measures such as body mass index and waist-to-hip ratio in Chinese individuals with T1DM.BC analysis,specifically identifying visceral fat(trunk fat),may play an important role in identifying the increased risk of MS in non-obese patients with T1DM. 展开更多
关键词 Body composition Metabolic syndrome Insulin resistance Visceral fat Estimated glucose disposal rate
下载PDF
Fecal microbiota transplantation:whole grain highland barley improves glucose metabolism by changing gut microbiota 被引量:1
6
作者 Xin Ren Fulong Zhang +3 位作者 Min Zhang Yuan Fang Zenglong Chen Meili Huan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2014-2024,共11页
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro... Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition. 展开更多
关键词 Highland barley DIABETES Glucose metabolism Gut microbiota Fecal bacteria transplantation
下载PDF
Boosted Electrocatalytic Glucose Oxidation Reaction on Noble-Metal-Free MoO_(3)-Decorated Carbon Nanotubes 被引量:1
7
作者 Yu-Long Men Ning Dou +3 位作者 Yiyi Zhao Yan Huang Lei Zhang Peng Liu 《Transactions of Tianjin University》 EI CAS 2024年第1期63-73,共11页
Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce... Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells. 展开更多
关键词 Interface eff ect ELECTROCATALYSIS Molybdenum oxide GLUCOSE Oxidation reaction
下载PDF
Li-promoted C_(3)N_(4) catalyst for efficient isomerization of glucose into fructose at 50℃ in water 被引量:1
8
作者 Wang Liu Yanfei Zhang +5 位作者 Mengya Sun Xinpeng Zhao Shenggang Li Xinqing Chen Liangshu Zhong Lingzhao Kong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1419-1426,共8页
Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,hi... Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery. 展开更多
关键词 GLUCOSE FRUCTOSE ISOMERIZATION Li–C_(3)N_(4) Density functional theory calculations
下载PDF
Global research trends and prospects of cellular metabolism in colorectal cancer 被引量:1
9
作者 Yan-Chen Liu Zhi-Cheng Gong +3 位作者 Chao-Qun Li Peng Teng Yan-Yan Chen Zhao-Hui Huang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期527-542,共16页
BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometr... BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometrics.AIM To analyze the development in the field of“glucose metabolism”(GM),“amino acid metabolism”(AM),“lipid metabolism”(LM),and“nucleotide metabolism”(NM)in CRC by visualization.METHODS Articles within the abovementioned areas of GM,AM,LM and NM in CRC,which were published from January 1,1991,to December 31,2022,are retrieved from the Web of Science Core Collection and analyzed by CiteSpace 6.2.R4 and VOSviewer 1.6.19.RESULTS The field of LM in CRC presented the largest number of annual publications and the fastest increase in the last decade compared with the other three fields.Meanwhile,China and the United States were two of the most prominent contri-butors in these four areas.In addition,Gang Wang,Wei Jia,Maria Notar-nicola,and Cornelia Ulrich ranked first in publication numbers,while Jing-Yuan Fang,Senji Hirasawa,Wei Jia,and Charles Fuchs were the most cited authors on average in these four fields,respectively.“Gut microbiota”and“epithelial-mesenchymal transition”emerged as the newest burst words in GM,“gut microbiota”was the latest outburst word in AM,“metastasis”,“tumor microenvironment”,“fatty acid metabolism”,and“metabolic reprogramming”were the up-to-date outbreaking words in LM,while“epithelial-mesenchymal transition”and“apoptosis”were the most recently occurring words in NM.CONCLUSION Research in“cellular metabolism in CRC”is all the rage at the moment,and researchers are particularly interested in exploring the mechanism to explain the metabolic alterations in CRC.Targeting metabolic vulnerability appears to be a promising direction in CRC therapy. 展开更多
关键词 Cellular metabolism Colorectal cancer Glucose metabolism Amino acid metabolism Lipid metabolism Nucleotide metabolism
下载PDF
Application and management of continuous glucose monitoring in diabetic kidney disease 被引量:1
10
作者 Xin-Miao Zhang Quan-Quan Shen 《World Journal of Diabetes》 SCIE 2024年第4期591-597,共7页
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou... Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation. 展开更多
关键词 Diabetic kidney disease Continuous glucose monitoring Glycemic monitoring HEMODIALYSIS Peritoneal dialysis Kidney transplantation
下载PDF
Comparative efficacy of sodium glucose cotransporter-2 inhibitors in the management of type 2 diabetes mellitus:A real-world experience 被引量:1
11
作者 Lubna Islam Dhanya Jose +3 位作者 Mohammed Alkhalifah Dania Blaibel Vishnu Chandrabalan Joseph M Pappachan 《World Journal of Diabetes》 SCIE 2024年第3期463-474,共12页
BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCT... BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making. 展开更多
关键词 Sodium glucose cotransporter-2 inhibitors Empagliflozin Canagliflozin DAPAGLIFLOZIN Type 2 diabetes mellitus Cardiovascular disease Albumin creatinine ratio DIABESITY
下载PDF
Metabolic disorders in prediabetes:From mechanisms to therapeutic management 被引量:1
12
作者 Wen-Xin Ping Shan Hu +1 位作者 Jing-Qian Su Song-Ying Ouyang 《World Journal of Diabetes》 SCIE 2024年第3期361-377,共17页
Diabetes,one of the world's top ten diseases,is known for its high mortality and complication rates and low cure rate.Prediabetes precedes the onset of diabetes,during which effective treatment can reduce diabetes... Diabetes,one of the world's top ten diseases,is known for its high mortality and complication rates and low cure rate.Prediabetes precedes the onset of diabetes,during which effective treatment can reduce diabetes risk.Prediabetes risk factors include high-calorie and high-fat diets,sedentary lifestyles,and stress.Consequences may include considerable damage to vital organs,including the retina,liver,and kidneys.Interventions for treating prediabetes include a healthy lifestyle diet and pharmacological treatments.However,while these options are effective in the short term,they may fail due to the difficulty of long-term implementation.Medications may also be used to treat prediabetes.This review examines prediabetic treatments,particularly metformin,glucagon-like peptide-1 receptor agonists,sodium glucose cotransporter 2 inhibitors,vitamin D,and herbal medicines.Given the remarkable impact of prediabetes on the progression of diabetes mellitus,it is crucial to intervene promptly and effectively to regulate prediabetes.However,the current body of research on prediabetes is limited,and there is considerable confusion surrounding clinically relevant medications.This paper aims to provide a comprehensive summary of the pathogenesis of prediabetes mellitus and its associated therapeutic drugs.The ultimate goal is to facilitate the clinical utilization of medications and achieve efficient and timely control of diabetes mellitus. 展开更多
关键词 PREDIABETES Glucagon-like peptide agonists Sodium–glucose cotransporter 2 inhibitors Vitamin D Chinese herbal medicines
下载PDF
Glucagon-like peptide-1 receptor agonists as a possible intervention to delay the onset of type 1 diabetes:A new horizon 被引量:1
13
作者 Mahmoud Nassar Ajay Chaudhuri +1 位作者 Husam Ghanim Paresh Dandona 《World Journal of Diabetes》 SCIE 2024年第2期133-136,共4页
Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insu... Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insulin replacement to control blood glucose levels.However,this approach does not address the underlying autoimmune process or prevent the progressive loss of beta cells.Recent research has explored the potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)as a novel intervention to modify the disease course and delay the onset of T1D.GLP-1RAs are medications initially developed for treating type 2 diabetes.They exert their effects by enhancing glucose-dependent insulin secretion,suppressing glucagon secretion,and slowing gastric emptying.Emerging evidence suggests that GLP-1RAs may also benefit the treatment of newly diagnosed patients with T1D.This article aims to highlight the potential of GLP-1RAs as an intervention to delay the onset of T1D,possibly through their potential immunomodulatory and anti-inflammatory effects and preservation of beta-cells.This article aims to explore the potential of shifting the paradigm of T1D management from reactive insulin replacement to proactive disease modification,which should open new avenues for preventing and treating T1D,improving the quality of life and long-term outcomes for individuals at risk of T1D. 展开更多
关键词 Type 1 diabetes Semaglutide Glucagon-like peptide-1 receptor agonists Insulin therapy Autoimmune response Blood glucose monitoring Β-cell preservation Early screening Teplizumab Randomized controlled trials
下载PDF
Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring:Pioneering point-of-care and beyond
14
作者 Moein Safarkhani Abdullah Aldhaher +5 位作者 Golnaz Heidari Ehsan Nazarzadeh Zare Majid Ebrahimi Warkiani Omid Akhavan YunSuk Huh Navid Rabiee 《Nano Materials Science》 EI CAS CSCD 2024年第3期263-283,共21页
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio... This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable. 展开更多
关键词 Glucose sensor BIOSENSOR Wearable devices NONINVASIVE Real-time monitoring
下载PDF
Glucose metabolic reprogramming-related parameters for the prediction of 28-day neurological prognosis and all-cause mortality in patients after cardiac arrest:a prospective single-center observational study
15
作者 Subi Abudurexiti Shihai Xu +2 位作者 Zhangping Sun Yi Jiang Ping Gong 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第3期197-205,共9页
BACKGROUND:We aimed to observe the dynamic changes in glucose metabolic reprogrammingrelated parameters and their ability to predict neurological prognosis and all-cause mortality in cardiac arrest patients after the ... BACKGROUND:We aimed to observe the dynamic changes in glucose metabolic reprogrammingrelated parameters and their ability to predict neurological prognosis and all-cause mortality in cardiac arrest patients after the restoration of spontaneous circulation(ROSC).METHODS:Adult cardiac arrest patients after ROSC who were admitted to the emergency or cardiac intensive care unit of the First Aflliated Hospital of Dalian Medical University from August 1,2017,to May 30,2021,were enrolled.According to 28-day survival,the patients were divided into a non-survival group(n=82) and a survival group(n=38).Healthy adult volunteers(n=40) of similar ages and sexes were selected as controls.The serum levels of glucose metabolic reprogrammingrelated parameters(lactate dehydrogenase [LDH],lactate and pyruvate),neuron-specific enolase(NSE) and interleukin 6(IL-6) were measured on days 1,3,and 7 after ROSC.The Acute Physiology and Chronic Health Evaluation II(APACHE II) score and Sequential Organ Failure Assessment(SOFA) score were calculated.The Cerebral Performance Category(CPC) score was recorded on day 28 after ROSC.RESULTS:Following ROSC,the serum LDH(607.0 U/L vs.286.5 U/L),lactate(5.0 mmol/L vs.2.0 mmol/L),pyruvate(178.0 μmol/L vs.70.9 μmol/L),and lactate/pyruvate ratio(34.1 vs.22.1) significantly increased and were higher in the non-survivors than in the survivors on admission(all P<0.05).Moreover,the serum LDH,pyruvate,IL-6,APACHE II score,and SOFA score on days 1,3 and 7 after ROSC were significantly associated with 28-day poor neurological prognosis and 28-day all-cause mortality(all P<0.05).The serum LDH concentration on day 1 after ROSC had an area under the receiver operating characteristic curve(AUC) of 0.904 [95% confidence interval [95% CI]:0.851–0.957]) with 96.8% specificity for predicting 28-day neurological prognosis and an AUC of 0.950(95% CI:0.911–0.989) with 94.7% specificity for predicting 28-day all-cause mortality,which was the highest among the glucose metabolic reprogramming-related parameters tested.CONCLUSION:Serum parameters related to glucose metabolic reprogramming were significantly increased after ROSC.Increased serum LDH and pyruvate levels,and lactate/pyruvate ratio may be associated with 28-day poor neurological prognosis and all-cause mortality after ROSC,and the predictive eflcacy of LDH during the first week was superior to others. 展开更多
关键词 Glucose metabolic reprogramming Lactate dehydrogenase Cardiac arrest PROGNOSIS
下载PDF
Effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets
16
作者 Zexi Li Yunfei Li +6 位作者 Yufei Zhao Guifu Wang Rujie Liu Yue Li Qamar Aftab Zewei Sun Qingzhen Zhong 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2106-2121,共16页
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th... Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen. 展开更多
关键词 Glucose release kinetics Nitrogen utilization Nutrient transporter PIGLET
下载PDF
Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy
17
作者 Rangrang Fan Linrui Cai +4 位作者 Hao Liu Hongxu Chen Caili Chen Gang Guo Jianguo Xu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期321-334,共14页
Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvatio... Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvation induced by glucose oxidase(GOx),after their efficient delivery to tumor sites,GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ.Herein,a pH-responsive epigallocatechin gallate(EGCG)-conjugated low-molecular-weight chitosan(LC-EGCG,LE)nanoparticle(Met–GOx/Fe@LE NPs)was constructed.The coordination between iron ions(Fe3+)and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction.Met–GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability.Moreover,this pH-responsive nanoplatform presents controllable drug release behavior.An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug.The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation.This triple-combination therapy approach is promising for efficient and targeted cancer treatment. 展开更多
关键词 METFORMIN Glucose oxidase Metabolism disruption Tumor starvation Combination cancer therapy
下载PDF
Heterogeneous Cu_(x)O Nano‑Skeletons from Waste Electronics for Enhanced Glucose Detection
18
作者 Yexin Pan Ruohan Yu +8 位作者 Yalong Jiang Haosong Zhong Qiaoyaxiao Yuan Connie Kong Wai Lee Rongliang Yang Siyu Chen Yi Chen Wing Yan Poon Mitch Guijun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期554-568,共15页
Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabrica... Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives. 展开更多
关键词 Copper oxide Electron 3D tomography E-WASTE Glucose detection Electrochemical activation
下载PDF
Facile Semiconductor p-n Homojunction Nanowires with Strategic p-Type Doping Engineering Combined with Surface Reconstruction for Biosensing Applications
19
作者 Liuan Li Shi Fang +12 位作者 Wei Chen Yueyue Li Mohammad Fazel Vafadar Danhao Wang Yang Kang Xin Liu Yuanmin Luo Kun Liang Yiping Dang Lei Zhao Songrui Zhao Zongzhi Yin Haiding Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期15-30,共16页
Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-typ... Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics.Herein,a PEC-type photosensor was carefully designed and constructed by employing gallium nitride(GaN)p-n homojunction semiconductor nanowires on silicon,with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide(CoNiO_(x)).Essentially,the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface,while CoNiO_(x)decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface.Consequently,the constructed photosensor achieves a high responsivity of 247.8 mA W^(-1)while simultaneously exhibiting excellent operating stability.Strikingly,based on the remarkable stability and high responsivity of the device,a glucose sensing system was established with a demonstration of glucose level determination in real human serum.This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering. 展开更多
关键词 p-n GaN nanowires Strategic p-doping Surface decoration Photoelectrochemical sensor Glucose sensing
下载PDF
Effects of different doses of glucose and fructose on central metabolic pathways and intercellular wireless communication networks in humans
20
作者 Dingqiang Lu Yujiao Liu +9 位作者 Miao Zhao Shuai Yuan Danyang Liu Xinqian Wang Yixuan Liu Yifei Zhang Ming Li Yufeng Lü Guangchang Pang Ruijuan Ren 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1906-1916,共11页
Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communicat... Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communication,volunteers were given low,medium,and high doses of glucose and fructose.Serum cytokines,glucose,lactate,nicotinamide adenine dinucleotide(NADH)and metabolic enzymes were assayed,and central carbon metabolic pathway networks and cytokine communication networks were constructed.The results showed that the glucose and fructose groups basically maintained the trend of decreasing catabolism and increasing anabolism with increasing dose.Compared with glucose,low-dose fructose decreased catabolism and increased anabolism,significantly enhanced the expression of the inflammatory cytokine interferon-γ(IFN-γ),macrophage-derived chemokine(MDC),induced protein-10(IP-10),and eotaxin,and significantly reduced the activity of isocitrate dehydrogenase(ICDH)and pyruvate dehydrogenase complexes(PDHC).Both medium and high doses of fructose increase catabolism and anabolism,and there are more cytokines and enzymes with significant changes.Furthermore,multiple cytokines and enzymes show strong relevance to metabolic regulation by altering the transcription and expression of enzymes in central carbon metabolic pathways.Therefore,excessive intake of fructose should be reduced to avoid excessive inflammatory responses,allergic reactions and autoimmune diseases. 展开更多
关键词 FRUCTOSE GLUCOSE Central carbon metabolic pathway Metabolic enzymes Cytokine network
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部