Six glucoside compounds have been synthesized by means of phase-transfer catalytic method and deacetylation from the starting material ferrocene. Their structures have been confirmed by elementary analysis, IR,1HNMR a...Six glucoside compounds have been synthesized by means of phase-transfer catalytic method and deacetylation from the starting material ferrocene. Their structures have been confirmed by elementary analysis, IR,1HNMR and MS. The antianemic activities of some compounds have also been tested. Results indicate that these glucoside compounds possess the antianemic activities and therefore, the further study is well worth making.展开更多
Nigerooligosaccharides (NOS) is a new functional oligosaccharide containing α-1,3 glucosidic bond with good anti-digestive properties and intestinal probiotics.Transglycosylation catalyzed by α-glucosidase is an eff...Nigerooligosaccharides (NOS) is a new functional oligosaccharide containing α-1,3 glucosidic bond with good anti-digestive properties and intestinal probiotics.Transglycosylation catalyzed by α-glucosidase is an effective method for the preparation of oligosaccharides.However,there are few reports on the enzymatic synthesis of nigerooligosaccharides by α-glucosidase at present.This study was aimed to investigate the transglycosylation property of the GH31 α-glucosidase from Thermoplasma acidophilum,TaAglA,and also evaluate its application performance in the preparation of NOS.It was found that TaAglA exhibited selectivity for α-1,3 and α-1,4 linkages when catalyzing hydrolysis,but for α-1,3 and α-1,6 linkages when catalyzing transglycosylation.Using 10% glucose and 20% maltose as substrates,TaAglA yielded 88.5 g/L NOS under the condition of pH 6.0,80 ℃ and 1 U/mL enzyme addition,which was the highest level to our knowledge.In addition,components with higher polymerization degrees,i.e.nigerotriose and nigerosyl-glucose,occupied 53.6% proportion of the total NOS products,giving it better probiotic functions.Futhermore,after purification by glucoamylase digestion and yeast culture,the final yield of NOS was 26.1%,and the purity of the product was 93%.These findings on TaAglA were expected to provide a new candidate for large-scale enzymatic synthesis of NOS,and also have important theoretical significance for the study of GH31 α-glucosidase.展开更多
文摘Six glucoside compounds have been synthesized by means of phase-transfer catalytic method and deacetylation from the starting material ferrocene. Their structures have been confirmed by elementary analysis, IR,1HNMR and MS. The antianemic activities of some compounds have also been tested. Results indicate that these glucoside compounds possess the antianemic activities and therefore, the further study is well worth making.
基金supported by grants from the National Natural Science Foundation of China(31730067,31801472)the Natural Science Foundation of Jiangsu Province(BK20180604)the national first-class discipline program of Light Industry Technology and Engineering(LITE2018-03).
文摘Nigerooligosaccharides (NOS) is a new functional oligosaccharide containing α-1,3 glucosidic bond with good anti-digestive properties and intestinal probiotics.Transglycosylation catalyzed by α-glucosidase is an effective method for the preparation of oligosaccharides.However,there are few reports on the enzymatic synthesis of nigerooligosaccharides by α-glucosidase at present.This study was aimed to investigate the transglycosylation property of the GH31 α-glucosidase from Thermoplasma acidophilum,TaAglA,and also evaluate its application performance in the preparation of NOS.It was found that TaAglA exhibited selectivity for α-1,3 and α-1,4 linkages when catalyzing hydrolysis,but for α-1,3 and α-1,6 linkages when catalyzing transglycosylation.Using 10% glucose and 20% maltose as substrates,TaAglA yielded 88.5 g/L NOS under the condition of pH 6.0,80 ℃ and 1 U/mL enzyme addition,which was the highest level to our knowledge.In addition,components with higher polymerization degrees,i.e.nigerotriose and nigerosyl-glucose,occupied 53.6% proportion of the total NOS products,giving it better probiotic functions.Futhermore,after purification by glucoamylase digestion and yeast culture,the final yield of NOS was 26.1%,and the purity of the product was 93%.These findings on TaAglA were expected to provide a new candidate for large-scale enzymatic synthesis of NOS,and also have important theoretical significance for the study of GH31 α-glucosidase.