This study was performed to identify how the different levels of nitrogen application affected the variances of gluten properties and end-use qualities and the differences of variances among Korean wheat cultivars. Pr...This study was performed to identify how the different levels of nitrogen application affected the variances of gluten properties and end-use qualities and the differences of variances among Korean wheat cultivars. Protein and dry gluten content, SDS sedimentation volume and water absorption of Mixolab increased as nitrogen application increased. This ratio of the increase was higher in Korean wheat cultivars for bread than in Korean wheat cultivars for noodles and cookies. The proportion of(α+β)-gliadin measured by reversed-phase high-performance liquid chromatography(RP-HPLC) increased, but the proportion of ω-and γ-gliadin decreased as the protein content increased. The Korean wheat cultivars for bread showed a high proportion of(α+β)-gliadin increase, the Korean cultivars for noodles had a high proportion of γ-gliadin decrease and the Korean wheat cultivars for cookies had a high proportion of ω-gliadin decrease. However, there was no variation of the component in the proportion of glutenin component measured by RP-HPLC, even though the protein content was increased, but all of the protein fractions measured by size exclusion(SE)-HPLC were increased. The soluble monomeric protein showed a high proportion of Korean wheat cultivars for bread by the increase of protein content. Bread loaf volume increased by the increase of protein content but there were no variances in the ratio of increase among Korean wheat cultivars. The cookie diameter decreased with the increase of protein content, and this ratio of decrease was the highest in Korean wheat cultivars for cookies. The hardness of cooked noodles also increased by the increase of protein content but there were no variations in springiness and cohesiveness. The decrease proportion of ω-gliadin affected the increase of bread loaf volume, the hardness of cooked noodles, and the decrease of cookie diameter.展开更多
[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 16...[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 161 Chinese winter wheat cultivars from four regions. [Method] One hundred and sixty-one winter wheat varieties from China Wheat Zones I, II, III and IV (Table 1) were grown in a randomized block de- sign, in the 2009-2011 cropping season; and then the indexes for describing the grain morphological characteristics such as the thousand kernel weight (TKW), kernel length (KL), kernel width (KW) and kernel thickness (KT) were measured; the phytic acid content (PAC), protein content and sedimentation value were also determined; finally, the relationship between PAC and protein content, kernel characteristics were analyzed. [Result] The PAC in the cultivars tested ranged from 0.92% to 1.95% with a mean value of 1.41%. Protein content ranged from 12.60% to 19.20%, with a mean of 15.24%. Most (53.4%) of the wheat genotypes had a PAC value in the range of 1.25% to 1.55%. No significant correlation was found between PAC and protein content, sedimentation value, while protein content and SDS sedimentation value was significant correlated, which suggested the possibility of breeding wheat cultivars that have a low PAC but a high protein content and good gluten quality. There was a high correlation between TKW and KW (,.=0.79), KL (r=0.50) and KT (r=0.64). PAC was found having no significant correlation with TKW, KW, KL and KT. [Conclusion] The result suggests the possibility of breeding wheat cultivars that have a low PAC but high kernel weight.展开更多
基金the support of Cooperative Research Program for Agriculture Science & Technology Development, Rural Development Administration, Republic of Korea (PJ011009)
文摘This study was performed to identify how the different levels of nitrogen application affected the variances of gluten properties and end-use qualities and the differences of variances among Korean wheat cultivars. Protein and dry gluten content, SDS sedimentation volume and water absorption of Mixolab increased as nitrogen application increased. This ratio of the increase was higher in Korean wheat cultivars for bread than in Korean wheat cultivars for noodles and cookies. The proportion of(α+β)-gliadin measured by reversed-phase high-performance liquid chromatography(RP-HPLC) increased, but the proportion of ω-and γ-gliadin decreased as the protein content increased. The Korean wheat cultivars for bread showed a high proportion of(α+β)-gliadin increase, the Korean cultivars for noodles had a high proportion of γ-gliadin decrease and the Korean wheat cultivars for cookies had a high proportion of ω-gliadin decrease. However, there was no variation of the component in the proportion of glutenin component measured by RP-HPLC, even though the protein content was increased, but all of the protein fractions measured by size exclusion(SE)-HPLC were increased. The soluble monomeric protein showed a high proportion of Korean wheat cultivars for bread by the increase of protein content. Bread loaf volume increased by the increase of protein content but there were no variances in the ratio of increase among Korean wheat cultivars. The cookie diameter decreased with the increase of protein content, and this ratio of decrease was the highest in Korean wheat cultivars for cookies. The hardness of cooked noodles also increased by the increase of protein content but there were no variations in springiness and cohesiveness. The decrease proportion of ω-gliadin affected the increase of bread loaf volume, the hardness of cooked noodles, and the decrease of cookie diameter.
基金Supported by the National Basic Research Program of China(2009CB118602)Young Backbone Teachers Program of Henan Province(2011)~~
文摘[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 161 Chinese winter wheat cultivars from four regions. [Method] One hundred and sixty-one winter wheat varieties from China Wheat Zones I, II, III and IV (Table 1) were grown in a randomized block de- sign, in the 2009-2011 cropping season; and then the indexes for describing the grain morphological characteristics such as the thousand kernel weight (TKW), kernel length (KL), kernel width (KW) and kernel thickness (KT) were measured; the phytic acid content (PAC), protein content and sedimentation value were also determined; finally, the relationship between PAC and protein content, kernel characteristics were analyzed. [Result] The PAC in the cultivars tested ranged from 0.92% to 1.95% with a mean value of 1.41%. Protein content ranged from 12.60% to 19.20%, with a mean of 15.24%. Most (53.4%) of the wheat genotypes had a PAC value in the range of 1.25% to 1.55%. No significant correlation was found between PAC and protein content, sedimentation value, while protein content and SDS sedimentation value was significant correlated, which suggested the possibility of breeding wheat cultivars that have a low PAC but a high protein content and good gluten quality. There was a high correlation between TKW and KW (,.=0.79), KL (r=0.50) and KT (r=0.64). PAC was found having no significant correlation with TKW, KW, KL and KT. [Conclusion] The result suggests the possibility of breeding wheat cultivars that have a low PAC but high kernel weight.