High oleic acid rapeseed oil offers superior nutritional and health benefits,but its mass production is limited due to poor resistance and slightly lower yield.Photosynthesis serves as the foundation of biological sur...High oleic acid rapeseed oil offers superior nutritional and health benefits,but its mass production is limited due to poor resistance and slightly lower yield.Photosynthesis serves as the foundation of biological survival and closely correlates with crop resistance to stresses,yield,and quality.To identify photosynthesis-related genes,transcriptome sequencing was conducted on high oleic acid rapeseed Gaoyousuan No.1 and low oleic acid rapeseed Xiangyou 15 resulting in the identification of a total of 9396 differentially expressed genes(4669 upregulated and 4727 down-regulated).From these genes nine candidate genes were screened using GO and KEGG analysis with BnGLO4 being selected for cloning purposes.The BnGLO4 gene fragment has a length of 1161 bp with an ORF sequence of 1092 bp encoding a theoretical isoelectric point of pI 7.60;it encodes an unstable lipid-soluble protein localized in peroxisomes without transmembrane structural domains or signal peptides.Its amino acid sequence homology was highest with that of BnaA01G0355200ZS,BnaA01G0355600ZS,BnaA05G0410400ZS,BnaC01G0441800ZS,and Brassica rapa(XP_009117145.1),Brassica napus(CDY39100.1),Brassica cretica(KAF3533604.1)and Brassica oleracea var.oleracea(XP_013610644.1)belonging to the same cruciferous family.The BnGLO4 gene may be associated with responses to abiotic stresses such as salt,drought,and temperature extremes along with photosynthesis and growth in rapeseed plants.The expression levels of the GLO4 gene(BnaA01G0355200 ZS)were highest in filaments while being higher at each stage in seeds and siliques with the highest expression level at day 14 in seeds.Expression was significantly upregulated after 3 h of salt stress treatment,reaching a maximum at 12 h before slightly decreasing at 24 h.The findings of this study lay a foundation for further investigation on photosynthesis and stress response in high oleic rapeseed.展开更多
Glycolate oxidase (GO) isozyme with high specific activity (75.0~279.0 U/mg) is purified quickly on DEAE- Cellulose column from Brassica parachinensis Bailey. Its pI is greater than 10.0 assayed by acetate cellulose ...Glycolate oxidase (GO) isozyme with high specific activity (75.0~279.0 U/mg) is purified quickly on DEAE- Cellulose column from Brassica parachinensis Bailey. Its pI is greater than 10.0 assayed by acetate cellulose membrane electrophoresis for 1 hour. In view of about ten kinds of pI varied from 4.5 to 10.0 are observed when the same GO isozyme is assayed in IEF for 14 hours, it is obvious that its pI decreases in IEF. Its pI also decreases when this GO isozyme is assayed in PAGE for 14 hours. Based on the results in SDS-PAGE, CGE-SDS, and IEF, it is most likely that this GO isozyme comprises two noncovalently associated 66 kD basic subunit and 40 kD acidic subunit, the phenomenon of pI change is related to subunit dissociation. The basic/acidic amino acid residues ratios in GO isozyme and its 40 kD acidic subunit are detected to be 0.66 and 0.54, respectively, a value much lower than that (0.96) in 40 kD peptide encoded by GO cDNA reported previously, indicating neither M r nor charge characteristic of this 40 kD peptide is similar to that of GO isozyme subunits, two subunits of GO isozyme may be the modified products of the same GO gene after post-translation.展开更多
利用亚洲首个开放式臭氧浓度升高(Ozone-free air controlled enrichment)平台,以武运粳21(粳稻)和两优培九(杂交稻)两个耐性不同的水稻品种为材料,研究了大气臭氧浓度升高对水稻叶片乙醇酸氧化酶(GO)、多酚氧化酶(PPO)和抗坏血酸氧化酶...利用亚洲首个开放式臭氧浓度升高(Ozone-free air controlled enrichment)平台,以武运粳21(粳稻)和两优培九(杂交稻)两个耐性不同的水稻品种为材料,研究了大气臭氧浓度升高对水稻叶片乙醇酸氧化酶(GO)、多酚氧化酶(PPO)和抗坏血酸氧化酶(AAO)3种呼吸作用相关酶的影响,初步探讨了高臭氧浓度条件下水稻不同基因型对臭氧胁迫响应机制的差异性。结果表明:臭氧处理67天,促进了GO、PPO和AAO的活性,武运粳21升高的幅度(24.6%、9.25%和67.8%)大于两优培九的升高幅度(11.18%、7.26%和36.85%);在处理79天,臭氧胁迫抑制了水稻叶片GO、PPO和AAO的活性,品种间比较,武运粳21的3种酶降低的幅度(21.18%、6.14%和31.87%)小于两优培九(42.7%、33.93%和51.1%)。结果说明,武运粳21在通过提高3种酶的活力而进行较强的呼吸作用,起到耗散过剩光能并保护光合器官的作用,从而缓解臭氧对光合器官的损害缓解臭氧对水稻叶片造成的伤害,因此武运粳21比两优培九对臭氧耐受性强。展开更多
基金This work was financially supported by China Agriculture Research System of MOF and MARA(CARS-13)Hunan Agriculture Research System of DARA.
文摘High oleic acid rapeseed oil offers superior nutritional and health benefits,but its mass production is limited due to poor resistance and slightly lower yield.Photosynthesis serves as the foundation of biological survival and closely correlates with crop resistance to stresses,yield,and quality.To identify photosynthesis-related genes,transcriptome sequencing was conducted on high oleic acid rapeseed Gaoyousuan No.1 and low oleic acid rapeseed Xiangyou 15 resulting in the identification of a total of 9396 differentially expressed genes(4669 upregulated and 4727 down-regulated).From these genes nine candidate genes were screened using GO and KEGG analysis with BnGLO4 being selected for cloning purposes.The BnGLO4 gene fragment has a length of 1161 bp with an ORF sequence of 1092 bp encoding a theoretical isoelectric point of pI 7.60;it encodes an unstable lipid-soluble protein localized in peroxisomes without transmembrane structural domains or signal peptides.Its amino acid sequence homology was highest with that of BnaA01G0355200ZS,BnaA01G0355600ZS,BnaA05G0410400ZS,BnaC01G0441800ZS,and Brassica rapa(XP_009117145.1),Brassica napus(CDY39100.1),Brassica cretica(KAF3533604.1)and Brassica oleracea var.oleracea(XP_013610644.1)belonging to the same cruciferous family.The BnGLO4 gene may be associated with responses to abiotic stresses such as salt,drought,and temperature extremes along with photosynthesis and growth in rapeseed plants.The expression levels of the GLO4 gene(BnaA01G0355200 ZS)were highest in filaments while being higher at each stage in seeds and siliques with the highest expression level at day 14 in seeds.Expression was significantly upregulated after 3 h of salt stress treatment,reaching a maximum at 12 h before slightly decreasing at 24 h.The findings of this study lay a foundation for further investigation on photosynthesis and stress response in high oleic rapeseed.
文摘Glycolate oxidase (GO) isozyme with high specific activity (75.0~279.0 U/mg) is purified quickly on DEAE- Cellulose column from Brassica parachinensis Bailey. Its pI is greater than 10.0 assayed by acetate cellulose membrane electrophoresis for 1 hour. In view of about ten kinds of pI varied from 4.5 to 10.0 are observed when the same GO isozyme is assayed in IEF for 14 hours, it is obvious that its pI decreases in IEF. Its pI also decreases when this GO isozyme is assayed in PAGE for 14 hours. Based on the results in SDS-PAGE, CGE-SDS, and IEF, it is most likely that this GO isozyme comprises two noncovalently associated 66 kD basic subunit and 40 kD acidic subunit, the phenomenon of pI change is related to subunit dissociation. The basic/acidic amino acid residues ratios in GO isozyme and its 40 kD acidic subunit are detected to be 0.66 and 0.54, respectively, a value much lower than that (0.96) in 40 kD peptide encoded by GO cDNA reported previously, indicating neither M r nor charge characteristic of this 40 kD peptide is similar to that of GO isozyme subunits, two subunits of GO isozyme may be the modified products of the same GO gene after post-translation.
文摘利用亚洲首个开放式臭氧浓度升高(Ozone-free air controlled enrichment)平台,以武运粳21(粳稻)和两优培九(杂交稻)两个耐性不同的水稻品种为材料,研究了大气臭氧浓度升高对水稻叶片乙醇酸氧化酶(GO)、多酚氧化酶(PPO)和抗坏血酸氧化酶(AAO)3种呼吸作用相关酶的影响,初步探讨了高臭氧浓度条件下水稻不同基因型对臭氧胁迫响应机制的差异性。结果表明:臭氧处理67天,促进了GO、PPO和AAO的活性,武运粳21升高的幅度(24.6%、9.25%和67.8%)大于两优培九的升高幅度(11.18%、7.26%和36.85%);在处理79天,臭氧胁迫抑制了水稻叶片GO、PPO和AAO的活性,品种间比较,武运粳21的3种酶降低的幅度(21.18%、6.14%和31.87%)小于两优培九(42.7%、33.93%和51.1%)。结果说明,武运粳21在通过提高3种酶的活力而进行较强的呼吸作用,起到耗散过剩光能并保护光合器官的作用,从而缓解臭氧对光合器官的损害缓解臭氧对水稻叶片造成的伤害,因此武运粳21比两优培九对臭氧耐受性强。