Poly-β-(1,6)-N-acetylglucosamine (PNAG), the chief mediator of intercellular adhesion in many bacteria, plays an important role in biofilm formation. The pgaABCD locus was recognized from the whole genome sequence of...Poly-β-(1,6)-N-acetylglucosamine (PNAG), the chief mediator of intercellular adhesion in many bacteria, plays an important role in biofilm formation. The pgaABCD locus was recognized from the whole genome sequence of A. junii SH205. The enzyme glycosyltransferase, PgaC, catalyzes the production of PNAG with N-acetyl-D-glucosamine monomer. In this study, the possibility of PNAG biosynthesis in A. junii SH205 with its own PgaC was explored with the aid of bioinformatics. Multiple alignments of PgaC sequences of different bacteria were used to identify conserved amino acid residues that might be critical for the functioning of the protein. Three-dimensional model of A. junii SH205 PgaC was generated for spatial visualization of amino acid residues. The analyses have shown that the protein PgaC has five conserved amino acids, Asp<sup>140</sup>, Asp<sup>233</sup>, Gln<sup>269</sup>, Arg<sup>272</sup> and Trp<sup>273</sup>, critical for the activity of enzyme. Interaction of UDP-N-acetylglucosamine within the conserved pocket of glycosyltransferase was explored from molecular docking studies.展开更多
Glycosylated lipids(GLs)are added-value lipid derivatives of great potential.Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents,they have diverse biologica...Glycosylated lipids(GLs)are added-value lipid derivatives of great potential.Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents,they have diverse biological activities with promising biomedical and cosmeceutical applications.Glycolipids,especially those of microbial origin,have interesting antimicrobial,anticancer,antiparasitic as well as immunomodulatory activities.Nonetheless,GLs are hardly accessing the market because of their high cost of production.We believe that experience of metabolic engineering(ME)of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications.This review presents chemical groups of bacterial and fungal GLs,their biological activities,their general biosynthetic pathways and an insight on ME strategies for their production.展开更多
文摘Poly-β-(1,6)-N-acetylglucosamine (PNAG), the chief mediator of intercellular adhesion in many bacteria, plays an important role in biofilm formation. The pgaABCD locus was recognized from the whole genome sequence of A. junii SH205. The enzyme glycosyltransferase, PgaC, catalyzes the production of PNAG with N-acetyl-D-glucosamine monomer. In this study, the possibility of PNAG biosynthesis in A. junii SH205 with its own PgaC was explored with the aid of bioinformatics. Multiple alignments of PgaC sequences of different bacteria were used to identify conserved amino acid residues that might be critical for the functioning of the protein. Three-dimensional model of A. junii SH205 PgaC was generated for spatial visualization of amino acid residues. The analyses have shown that the protein PgaC has five conserved amino acids, Asp<sup>140</sup>, Asp<sup>233</sup>, Gln<sup>269</sup>, Arg<sup>272</sup> and Trp<sup>273</sup>, critical for the activity of enzyme. Interaction of UDP-N-acetylglucosamine within the conserved pocket of glycosyltransferase was explored from molecular docking studies.
基金This work was funded by the United States Department of Energy-Chicago(DoE-Chicago)grant DE-SC0008744 to Professor Gregory StephanopoulosDr.Ahmad M.Abdel-Mawgoud is funded by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada(NSERC),funding reference number PDF-488195-2016,and partly by the US DoE grant DESC0008744 mentioned above。
文摘Glycosylated lipids(GLs)are added-value lipid derivatives of great potential.Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents,they have diverse biological activities with promising biomedical and cosmeceutical applications.Glycolipids,especially those of microbial origin,have interesting antimicrobial,anticancer,antiparasitic as well as immunomodulatory activities.Nonetheless,GLs are hardly accessing the market because of their high cost of production.We believe that experience of metabolic engineering(ME)of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications.This review presents chemical groups of bacterial and fungal GLs,their biological activities,their general biosynthetic pathways and an insight on ME strategies for their production.