In order to study the coupling problem between methane drainage and spontaneous combustion of residual coal in the collapsed zone after mining ignitable coal seams with high methane,we have analyzed the effects of dif...In order to study the coupling problem between methane drainage and spontaneous combustion of residual coal in the collapsed zone after mining ignitable coal seams with high methane,we have analyzed the effects of differ-ent methane drainage modes on spontaneous combustion of residual coal through numerical simulation. The results show that deep and large flux methane drainage modes increases the air leakage from work faces to the goaf and formed new spontaneous combustion zones induced by drainage near vents,which increases the risk of self-ignition of coal—reducing the self-ignition period and enlarging the scale of self-ignition. The spontaneous upstream combustion oxidation of the main fire zone can be suppressed when both drainage and nitrogen injection were adopted. Our research results provide an effective technical measure and theoretical basis to determine the best methane drainage scheme and drainage parameters.展开更多
基金Project 50574038 supported by the National Natural Science Foundation of China
文摘In order to study the coupling problem between methane drainage and spontaneous combustion of residual coal in the collapsed zone after mining ignitable coal seams with high methane,we have analyzed the effects of differ-ent methane drainage modes on spontaneous combustion of residual coal through numerical simulation. The results show that deep and large flux methane drainage modes increases the air leakage from work faces to the goaf and formed new spontaneous combustion zones induced by drainage near vents,which increases the risk of self-ignition of coal—reducing the self-ignition period and enlarging the scale of self-ignition. The spontaneous upstream combustion oxidation of the main fire zone can be suppressed when both drainage and nitrogen injection were adopted. Our research results provide an effective technical measure and theoretical basis to determine the best methane drainage scheme and drainage parameters.