Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby ...Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.展开更多
Background Brown adipose tissue(BAT)is known to be capable of non-shivering thermogenesis under cold stimulation,which is related to the mortality of animals.In the previous study,we observed that goat BAT is mainly l...Background Brown adipose tissue(BAT)is known to be capable of non-shivering thermogenesis under cold stimulation,which is related to the mortality of animals.In the previous study,we observed that goat BAT is mainly located around the kidney at birth,and changes to white adipose tissue(WAT)in the perirenal adipose tissue of goats within one month after birth.However,the regulatory factors underlying this change is remain unclear.In this study,we systematically studied the perirenal adipose tissue of goat kids in histological,cytological,and accompanying molecular level changes from 0 to 28 d after birth.Results Our study found a higher mortality rate in winter-born goat kids,with goat birthing data statistics.Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d.This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids.Additionally,we found a series of changes of BAT during the first 28 d after birth,such as whitening,larger lipid droplets,decreased mitochondrial numbers,and down-regulation of key thermogenesis-related genes(UCP1,DIO2,UCP2,CIDEA,PPARGC1a,C/EBPb,and C/EBPa).Then,we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats.Furthermore,12 candidate genes were found to potentially regulate goat BAT thermogenesis.The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.While apoptosis may play a limited role,it is largely not critical in this transition process.Conclusions We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids,with notable species differences in the expression of adipose tissue marker genes,and we highlighted some potential marker genes for goat BAT and WAT.Additionally,the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.展开更多
Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP 15), have crucial roles in fecundity of sheep. Our previous investigation c...Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP 15), have crucial roles in fecundity of sheep. Our previous investigation confirmed that the fecundity mutations of sheep presented in highly prolific White goat individuals of Guizhou province. To illuminate other polymorphisms in Bmpl5 and Gdfl) genes and the relationship of these mutations with function, we cloned and characterized the coding region of Bmp15 and Gdfl). Molecular models of BMP15 and GDF9 mature peptide of White goat were constructed based on the homology of human BMP7 experimental tertiary structure. Two exons encoded prepropeptide of 394 amino acids in BMPI5 and 453 residues in GDF9, respectively. Apart from the FecXs mutation (S99I) in BMP15 and V791 mutation in GDF9 confirmed in White goat previously, other seven and three polymorphism sites were detected from BMP15 and GDF9 mature peptides, respectively. S32G, N66H, S99I/P99I and G107R in BMP15 could be important for the binding of dimer to receptors. Changes of P78Q and V79I in GDF9 might affect the binding of dimer to receptor type t. Comparing the length of BMP 15 and GDF9 prepropeptide in vertebrates, an increase in length of BMP 15 presented along with the protein evolution from fish to mammal and the divergence of the N-terminus residues in matured BMP15 peptide might contribute to the sensitive control on the fertility of animal species with low ovulation rate. These findings gave a valuable explanation for the correlation of mutations in Bmpl5 and Gdfl) genes with the control on fecundity of White goat and supported the notion that they were the pivotal factors in female fertility of White goat in Guizhou province.展开更多
[Objective] This study was to develop a live vector vaccine of goat pox virus of Peste des petits ruminants(PPR). [Method] Using PCR amplification technique, PPR H gene was obtained, then ligated into pGEM-T easy vect...[Objective] This study was to develop a live vector vaccine of goat pox virus of Peste des petits ruminants(PPR). [Method] Using PCR amplification technique, PPR H gene was obtained, then ligated into pGEM-T easy vector; the recombinants were digested by Nhe Ⅰ and Hind Ⅲ, and ligated into pEGFP-N1-P7.5, yielding the recombinant vector pEGFP-N1-P7.5-H; next the expression cassette EGFP-N1-P7.5-H was first released from recombinant vector pEGFP-N1-P7.5-H by double digestion of Hind Ⅲ and Nhe Ⅰ and ligated into pUC119-TK that was digested by Kpn Ⅰ, yielding the transfer vector pUC119-TK-EGFP-P7.5-H. [Result] Identification and double enzyme digestion showed that the transfer vector pUC119-TK-EGFP-P7.5-H was correctly constructed. From the transfer vector transfected BHK-21 cells which infected GTPV AV41, specific fluorescence was observed at 48th h of transfection. [Conclusion] The construction of goat poxvirus live vector laid a foundation for the live vector vaccine of PPR vaccine.展开更多
[Objective] The aim of this study was to reveal the relationship between inihibin (INH) α precursor gene and seasonal reproduction of goats, and investigate the evolutionary conservation of INHα precursor gene. [ ...[Objective] The aim of this study was to reveal the relationship between inihibin (INH) α precursor gene and seasonal reproduction of goats, and investigate the evolutionary conservation of INHα precursor gene. [ Method] Cloning and sequence analysis of 5' flanking region and exon of inihibinα (INHE) precursor gene in twenty ewes between non-seasonal estrous breed (Haimen goats) and seasonal estrous breed (Anhui white goats) was analyzed in this study. [ Result] Compared with Anhui white goats, INHα precursor gene in Haimen goats had three SNP but no amino acid change, while its nucleotide homology was 99.7% and amino acid homology was 100%. The nucleotide homology of INHα precursor gene in goat, cattle, pig, person, chicken, horse, rat and dog ranged from 12.7% to 96.5%. [ Conclusion] INHα precursor gene tends to be highly conserved in species, and any change of nucleotide and amino acid maybe directly influence the function of the whole gene coding and regulation.展开更多
Research on the identity of genes and their relationship with traits of economic importance in farm animals could assist in the selection of livestock. In this study, the polymorphisms of insulin-like growth factor 1 ...Research on the identity of genes and their relationship with traits of economic importance in farm animals could assist in the selection of livestock. In this study, the polymorphisms of insulin-like growth factor 1 (IGF1) gene in 561 goats of ten breeds were detected by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) and their association with litter size and birth weight in three breeds were investigated. The effects of IGF1 polymorphisms on the breeding value for litter size and birth weight were examined using least square methods. Two deletions (CA) were detected in the microsatellite and two mutations (A1637G, T1640C) were found in 5′-flanking regulatory region. No significant association between the polymorphisms in 5′-flanking region of IGF1 and birth weight was found in the three breeds of goats. In Gulin Ma goats, two polymorphisms were found to affect litter size traits. In Chuandong White goats and Guizhou White goats, no significant difference (P0.05) in litter size between goats carrying different genotypes was observed. Further evaluation and confirmation studies in more goat populations with larger sample sizes are necessary.展开更多
Paired-like homeodomain transcription factor 1 (PITX1) plays an important role in pituitary development by indirectly regulating the expression of the GH and PRL genes, and therefore PITX1 gene is regarded as a pote...Paired-like homeodomain transcription factor 1 (PITX1) plays an important role in pituitary development by indirectly regulating the expression of the GH and PRL genes, and therefore PITX1 gene is regarded as a potential candidate gene for building the relationship between the gene polymorphism and milk traits. The aim of this study was to explore the novel genetic variant in PITX1 gene and its effect on milk performance in dairy goats. Herein, a novel genetic variation (NW_00314033: g.201GA or IVS1+41GA) located at nt41 position of the first intron of the goat PITX1 gene was reported at the P1 locus, which can be genotyped by the Msp I PCR-RFLP. In the Msp I PCR-RFLP analyis, the GG variant was a major genotype, and the A variant was a minor allele in Guanzhong dairy goats which was at Hardy-Weinberg disequilibrium (chi-square χ2=140, P0.01). The establishment of associations between different genotypes and milk performance was performed in the analyzed population. A total of three significant associations of the polymorphism with average milk fat content (%) (P=0.045), morning milk fat content (%) (P=0.049), and afternoon milk fat content (%) (P=0.050), were found, respectively. A significant relationship between the polymorphism and average total solid content (P=0.029) was also detected. This novel single nucleotide polymorphism (SNP) extended the spectrum of genetic variation of the goat PITX1 gene, and its significant association with milk performance would benefit from the application of DNA markers related to improving milk performance through marker-assisted selection (MAS) in dairy goats.展开更多
Background: It is well known that feeding a high concentrate(HC) diet to lactating ruminants likely induces subacute ruminal acidosis(SARA) and leads to a decrease in milk fat production. However, the effects of ...Background: It is well known that feeding a high concentrate(HC) diet to lactating ruminants likely induces subacute ruminal acidosis(SARA) and leads to a decrease in milk fat production. However, the effects of feeding a HC diet for long periods on milk fatty acids composition and the mechanism behind the decline of milk fat still remains poorly understood. The aim of this study was to investigate the impact of feeding a HC diet to lactating dairy goats on milk fat yield and fatty acids composition with an emphasis on the mechanisms underlying the milk fat depression. Seventeen mid-lactating dairy goats were randomly allocated to three groups. The control treatment was fed a low-concentrate diet(35% concentrate, n = 5, LC) and there were two high-concentrate treatments(65% concentrate, HC), one fed a high concentrate diet for a long period(19 wks, n = 7, HL); one fed a high concentrate diet for a short period of time(4 wk, n = 5, HS). Milk fat production and fatty acids profiles were measured. In order to investigate the mechanisms underlying the changes in milk fat production and composition,the gene expression involved in lipid metabolism and DNA methylation in the mammary gland were also analyzed.Results: Milk production was increased by feeding the HC diet in the HS and HL groups compared with the LC diet(P 〈 0.01), while the percentage of milk fat was lower in the HL(P 〈 0.05) but not in the HS group. The total amount of saturated fatty acids(SFA) in the milk was not changed by feeding the HC diet, whereas the levels of unsaturated fatty acids(UFA) and monounsaturated fatty acids(MUFA) were markedly decreased in the HL group compared with the LC group(P 〈 0.05). Among these fatty acids, the concentrations of C15:0(P 〈 0.01), C17:0(P 〈 0.01), C17:1(P 〈 0.01), C18:1 n-9 c(P 〈 0.05), C18:3 n-3 r(P 〈 0.01) and C20:0(P 〈 0.01) were markedly lower in the HL group, and the concentrations of C20:0(P 〈 0.05) and C18:3 n-3 r(P 〈 0.01) were lower in the HS group compared with the LC group. However, the concentrations of C18:2 n-6 c(P 〈 0.05) and C20:4 n-6(P 〈 0.05) in the milk fat were higher in the HS group. Real-time PCR results showed that the m RNA expression of the genes involved in milk fat production in the mammary gland was generally decreased in the HL and HS groups compared with the LC group. Among these genes, ACSL1, ACSS1 & 2, ACACA, FAS, SCD, FADS2, and SREBP1 were downregulated in the mammary gland of the HL group(P 〈 0.05), and the expressions of ACSS2, ACACA, and FADS2 m RNA were markedly decreased in the HS goats compared with the LC group(P 〈 0.05). In contrast to the gene expression, the level of DNA methylation in the promoter regions of the ACACA and SCD genes was increased in the HL group compared with the LC group(P 〈 0.05). The levels of ACSL1 protein expression and FAS enzyme activity were also decreased in the mammary gland of the HL compared with the LC group(P 〈 0.05).Conclusions: Long-term feeding of a HC diet to lactating goats induced milk fat depression and FAs profile shift with lower MUFAs but higher SFAs. A general down-regulation of the gene expression involved in the milk fat production and a higher DNA methylation in the mammary gland may contribute to the decrease in milk fat production in goats fed a HC diet for long time periods.展开更多
Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other...Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.展开更多
On the basis of the ovine bone morphogenetic protein 15(BMP15)gene,two pairs of primers(PI and P2)were designed to amplify exons 1 and 2 of the BMP15 gene in five randomly selected does of both Angora and Jining Grey ...On the basis of the ovine bone morphogenetic protein 15(BMP15)gene,two pairs of primers(PI and P2)were designed to amplify exons 1 and 2 of the BMP15 gene in five randomly selected does of both Angora and Jining Grey goats.The sequences of BMP15 exon 1(P1 amplification)of Angora and Jining Grey goats were identical.There was a 3-nucleotide(CTT)insertion in positions 268 to 270 of goat BMP 15 exon1 compared with that of sheep(GenBank accession number AF236078),which caused a leucine insertion in the 12th position of amino acid sequence.Sequence length of goat BMP 15 exon 2(P2 amplification)was identical with that of sheep(AF236079),but there were seven nucleotide and four amino acid changes between goat and sheep.The nucleotide in the 963rd position of BMP15 exon 2 was A for Angora goat and sheep,and G for Jining Grey goat.Based on this A963G mutation,primer pair P3 was designed to detect single nucleotide polymorphism of BMP15 exon 2 in breeds of high prolificacy(Jining Grey),moderate prolificacy(Boer)and low prolificacy(Angora and Inner Mongolia Cashmere)by polymerase chain reactionsingle strand conformation polymorphism(PCR-SSCP).Three genotypes(AA,AG and GG)were detected in Jining Grey goats,two genotypes(AG and GG)in Boer,and only the AA genotype in Angora and Inner Mongolia Cashmere goats.Sequencing revealed one mutation(A963G)in genotype GG compared with genotype AA,and this mutation resulted in an amino acid change of serine→glycine(S300G).In Jining Grey goats,frequencies of AA,AG and GG genotypes were 0.008,0.059 and 0.933,respectively.Genotypic distributions of the BMP 15 gene were significantly different(P<0.05 or P<0.001)between Jining Grey and Boer,Angora,and Inner Mongolia Cashmere goats.In Jining Grey goats,the does with the GG genotype had 0.71(P<0.05)or 1.57(P<0.05)additional kids than did those with AG or AA genotypes,and does with the AG genotype had 0.86(P<0.05)more kids than did those with the AA genotype.These results tentatively indicate that the BMP15 gene is either a major gene that affects prolificacy in Jining Grey goats,or may be a molecular marker in close linkage with such a gene.展开更多
PCR-SSCP was used to detect mutations of bone morphogenetic protein 15(BMP15) gene in both high prolificacy(Small Tail Han sheep,Hu sheep,Jining Grey goat and Boer goat) and low prolificacy breeds(Dorset sheep,Texel s...PCR-SSCP was used to detect mutations of bone morphogenetic protein 15(BMP15) gene in both high prolificacy(Small Tail Han sheep,Hu sheep,Jining Grey goat and Boer goat) and low prolificacy breeds(Dorset sheep,Texel sheep,Inner Mongolia Cashmere goat and Angora goat).Both the nucleotide sequences and the amino acid sequences were compared in amplification fragments of both Small Tail Han sheep and Jining Grey goat.The results indicated that none of the four sheep and the four goat breeds carried the same FecX<sup>R</sup> mutation of the BMP15 gene as do Rasa Aragonesa sheep.The nucleotide sequence of Small Tail Han sheep was completely identical with that of the sheep BMP15 sequence(GenBank AF236079,NM<sub>0</sub>01114767).Three base substitutions(T529G,C530G and T576C) and two amino acid changes(V155G and S171P) were found in Jining Grey goat compared with Small Tail Han sheep.The FecX<sup>R</sup> mutation of the BMP15 gene had no significant effect on high prolificacy of Small Tail Han sheep, Hu sheep,Jining Grey goat and Boer goat.展开更多
As one member of the Ras super family, Rheb is an upstream regulator of mTOR signaling pathway, which regulates the process of cell-growth, proliferation and differentiation. In order to study the relationship between...As one member of the Ras super family, Rheb is an upstream regulator of mTOR signaling pathway, which regulates the process of cell-growth, proliferation and differentiation. In order to study the relationship between Rheb and mTOR in Inner Mongolian Cashmere goat (Capra hircus) cells, Ras homolog enriched in brain (Rheb) gene eDNA was amplified by RT-PCR. It is 555 bp in length and includes the complete ORF encoding 184 amino acids (GenBank accession no. HM569224). The full eDNA nucleotide sequence has a 99% identity with that of sheep, 98% with cattle and 93% with human while their amino acids sequence shares identity with 98, 97 and 97% of them, correspondingly. The bioinformatics analysis showed that Rheb has a Ras family domain, two casein kinase II phosphorylation sites, two ATP/GTP-binding sites motifA (P-loop), a prenyl group binding site (CAAX box). Tissue-specific expression analysis performed by semi- quantitative RT-PCR. The Rheb gene was expressed in all the tested tissues and the highest level ofmRNA accumulation was detected in brain, suggesting that Rheb played an important role in goat cells.展开更多
Guizhou black goat is the second-largest breed of goat in Guizhou, an important part of ecosystem of karst region. Constructing cladogTam of black goat and Guizhou local goat with molecular biological technique, we fo...Guizhou black goat is the second-largest breed of goat in Guizhou, an important part of ecosystem of karst region. Constructing cladogTam of black goat and Guizhou local goat with molecular biological technique, we found some functional genes related to reproduction and growth of black goat, such as FSHR, LHβ, GDF9, MSTN, POU1F1, GFI1B, etc. In view of the genetic relations between Guizhou black goat and other local goats, we reviewed the research status and progress of gene polymorphism of FSHR, LHβ,GDF9, MSTN, POU1F1, GFI1B, and prospected the research field of molecular properties of the breed resource.展开更多
The procedure of somatic cell nuclear transfer (SCNT) is likely to affect the expression level of growth-related genes especially imprinting genes. In this study, expressions of growth-related genes including three ...The procedure of somatic cell nuclear transfer (SCNT) is likely to affect the expression level of growth-related genes especially imprinting genes. In this study, expressions of growth-related genes including three imprinting genes (H19, IGF2, and IGF2R) and four non-imprinting genes (IGF1, IGFIR, GHR, and GHSR) in adult nuclear transferred (NT) goats were investigated by real-time PCR. The expressions of these genes in adult clones were found largely normal, but IGF2R and IGFIR were more highly expressed in cloned goats than in non-NT goats (P 〈 0.01). Analysis on mono-allelic expression pattern of imprinting genes indicated that mono-allelic expression patterns of H19 and IGF2 in cloned goats were similar to that in non-NT goats. In addition, the sequence of goat IGF2 gene and the putative amino acid sequence were obtained. The 986 nucleotide cDNA of goat IGF2 gene contained an open-reading frame of 540 nucleotides coding for 179 amino acids. Both cDNA sequence and amino acid sequence of IGF2 in goat showed their higher homology with that in sheep than in cattle; the partial cDNA fragments of H19, IGF2R, GHSR, IGFIR, and GHR in goat were also cloned and sequenced, which shared higher sequence identities with those in sheep than in cattle.展开更多
Hoxc13 has an important role in controlling hair formation. In this study, we examine the Hoxc13 RNA expression pattern of skin during embryo development. The result indicated that changes of the Hoxe13 gene expressio...Hoxc13 has an important role in controlling hair formation. In this study, we examine the Hoxc13 RNA expression pattern of skin during embryo development. The result indicated that changes of the Hoxe13 gene expression and thickness of skin have a similar trend during hair follicle morphogenesis. In interpreting these results, we investigated whether the regulation motifs is in Hoxc13 intron, which is a 5.4 kb fragment. To blast with other mammals, we found a very conservative region in all mammal animals and two regions in livestock, such as cow, sheep, horse, dog, and so on, which are not in other Hox genes. We have examined putative pre-miRNA in this region, providing an entry point for elucidating currently unknown mechanisms that are required for regulating quantitative levels of Hoxc13 gene expression.展开更多
基金supported by the National Natural Science Foundation of China (No. U20A2002)China Postdoctoral Science Foundation (No. 2023T160284)recipient of a research productivity fellowship from CNPq (National Council of Scientific and Technological Development) in Brazil
文摘Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.
基金This work was financially supported by The National Key Research and Development Program of China(No.2022YFD1300202)The National Natural Science Foundation of China(No.32372834)+2 种基金Chongqing Modern Agricultural Industry Technology System(CQMAITS202313)the Collection,Utilization and Innovation of Germplasm Resources by Research Institutes and Enterprises of Chongqing,China(cqnyncw-kqlhtxm)the Chongqing Postgraduate Research Innovation Project(CYB22141).
文摘Background Brown adipose tissue(BAT)is known to be capable of non-shivering thermogenesis under cold stimulation,which is related to the mortality of animals.In the previous study,we observed that goat BAT is mainly located around the kidney at birth,and changes to white adipose tissue(WAT)in the perirenal adipose tissue of goats within one month after birth.However,the regulatory factors underlying this change is remain unclear.In this study,we systematically studied the perirenal adipose tissue of goat kids in histological,cytological,and accompanying molecular level changes from 0 to 28 d after birth.Results Our study found a higher mortality rate in winter-born goat kids,with goat birthing data statistics.Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d.This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids.Additionally,we found a series of changes of BAT during the first 28 d after birth,such as whitening,larger lipid droplets,decreased mitochondrial numbers,and down-regulation of key thermogenesis-related genes(UCP1,DIO2,UCP2,CIDEA,PPARGC1a,C/EBPb,and C/EBPa).Then,we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats.Furthermore,12 candidate genes were found to potentially regulate goat BAT thermogenesis.The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.While apoptosis may play a limited role,it is largely not critical in this transition process.Conclusions We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids,with notable species differences in the expression of adipose tissue marker genes,and we highlighted some potential marker genes for goat BAT and WAT.Additionally,the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.
基金the National Natural Science Foundation of China (30560104)~~
文摘Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP 15), have crucial roles in fecundity of sheep. Our previous investigation confirmed that the fecundity mutations of sheep presented in highly prolific White goat individuals of Guizhou province. To illuminate other polymorphisms in Bmpl5 and Gdfl) genes and the relationship of these mutations with function, we cloned and characterized the coding region of Bmp15 and Gdfl). Molecular models of BMP15 and GDF9 mature peptide of White goat were constructed based on the homology of human BMP7 experimental tertiary structure. Two exons encoded prepropeptide of 394 amino acids in BMPI5 and 453 residues in GDF9, respectively. Apart from the FecXs mutation (S99I) in BMP15 and V791 mutation in GDF9 confirmed in White goat previously, other seven and three polymorphism sites were detected from BMP15 and GDF9 mature peptides, respectively. S32G, N66H, S99I/P99I and G107R in BMP15 could be important for the binding of dimer to receptors. Changes of P78Q and V79I in GDF9 might affect the binding of dimer to receptor type t. Comparing the length of BMP 15 and GDF9 prepropeptide in vertebrates, an increase in length of BMP 15 presented along with the protein evolution from fish to mammal and the divergence of the N-terminus residues in matured BMP15 peptide might contribute to the sensitive control on the fertility of animal species with low ovulation rate. These findings gave a valuable explanation for the correlation of mutations in Bmpl5 and Gdfl) genes with the control on fecundity of White goat and supported the notion that they were the pivotal factors in female fertility of White goat in Guizhou province.
文摘[Objective] This study was to develop a live vector vaccine of goat pox virus of Peste des petits ruminants(PPR). [Method] Using PCR amplification technique, PPR H gene was obtained, then ligated into pGEM-T easy vector; the recombinants were digested by Nhe Ⅰ and Hind Ⅲ, and ligated into pEGFP-N1-P7.5, yielding the recombinant vector pEGFP-N1-P7.5-H; next the expression cassette EGFP-N1-P7.5-H was first released from recombinant vector pEGFP-N1-P7.5-H by double digestion of Hind Ⅲ and Nhe Ⅰ and ligated into pUC119-TK that was digested by Kpn Ⅰ, yielding the transfer vector pUC119-TK-EGFP-P7.5-H. [Result] Identification and double enzyme digestion showed that the transfer vector pUC119-TK-EGFP-P7.5-H was correctly constructed. From the transfer vector transfected BHK-21 cells which infected GTPV AV41, specific fluorescence was observed at 48th h of transfection. [Conclusion] The construction of goat poxvirus live vector laid a foundation for the live vector vaccine of PPR vaccine.
基金Supported by Natural Science Foundation of Jiangsu Province(BK2007561)~~
文摘[Objective] The aim of this study was to reveal the relationship between inihibin (INH) α precursor gene and seasonal reproduction of goats, and investigate the evolutionary conservation of INHα precursor gene. [ Method] Cloning and sequence analysis of 5' flanking region and exon of inihibinα (INHE) precursor gene in twenty ewes between non-seasonal estrous breed (Haimen goats) and seasonal estrous breed (Anhui white goats) was analyzed in this study. [ Result] Compared with Anhui white goats, INHα precursor gene in Haimen goats had three SNP but no amino acid change, while its nucleotide homology was 99.7% and amino acid homology was 100%. The nucleotide homology of INHα precursor gene in goat, cattle, pig, person, chicken, horse, rat and dog ranged from 12.7% to 96.5%. [ Conclusion] INHα precursor gene tends to be highly conserved in species, and any change of nucleotide and amino acid maybe directly influence the function of the whole gene coding and regulation.
基金supported by the earmarked fund for Modern Agro-Industry Technology Research System of China (nycytx-39)the Natural Science Foundation Project of CQ CSTC, Chongqing City, China (CSTC, 2009BA1066)
文摘Research on the identity of genes and their relationship with traits of economic importance in farm animals could assist in the selection of livestock. In this study, the polymorphisms of insulin-like growth factor 1 (IGF1) gene in 561 goats of ten breeds were detected by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) and their association with litter size and birth weight in three breeds were investigated. The effects of IGF1 polymorphisms on the breeding value for litter size and birth weight were examined using least square methods. Two deletions (CA) were detected in the microsatellite and two mutations (A1637G, T1640C) were found in 5′-flanking regulatory region. No significant association between the polymorphisms in 5′-flanking region of IGF1 and birth weight was found in the three breeds of goats. In Gulin Ma goats, two polymorphisms were found to affect litter size traits. In Chuandong White goats and Guizhou White goats, no significant difference (P0.05) in litter size between goats carrying different genotypes was observed. Further evaluation and confirmation studies in more goat populations with larger sample sizes are necessary.
基金funded by the National Natural Science Foundation of China (31172184)the Young New Star Project on Science & Technology of Shaanxi Province, China(2011kjxx64)+2 种基金the Natural Science Foundation of Shaanxi Province of China (2011JQ3009)the Young Topnotch Researcher Support Project of Northwest A&F University,China (QNGG-2009-007)the Special Fund for Basic Scientific Research and Operation Expenses in Sci-Tech Innovation of Northwest A&F University, China(QN2011102)
文摘Paired-like homeodomain transcription factor 1 (PITX1) plays an important role in pituitary development by indirectly regulating the expression of the GH and PRL genes, and therefore PITX1 gene is regarded as a potential candidate gene for building the relationship between the gene polymorphism and milk traits. The aim of this study was to explore the novel genetic variant in PITX1 gene and its effect on milk performance in dairy goats. Herein, a novel genetic variation (NW_00314033: g.201GA or IVS1+41GA) located at nt41 position of the first intron of the goat PITX1 gene was reported at the P1 locus, which can be genotyped by the Msp I PCR-RFLP. In the Msp I PCR-RFLP analyis, the GG variant was a major genotype, and the A variant was a minor allele in Guanzhong dairy goats which was at Hardy-Weinberg disequilibrium (chi-square χ2=140, P0.01). The establishment of associations between different genotypes and milk performance was performed in the analyzed population. A total of three significant associations of the polymorphism with average milk fat content (%) (P=0.045), morning milk fat content (%) (P=0.049), and afternoon milk fat content (%) (P=0.050), were found, respectively. A significant relationship between the polymorphism and average total solid content (P=0.029) was also detected. This novel single nucleotide polymorphism (SNP) extended the spectrum of genetic variation of the goat PITX1 gene, and its significant association with milk performance would benefit from the application of DNA markers related to improving milk performance through marker-assisted selection (MAS) in dairy goats.
基金supported by the National Nature Science Foundation of China(project no.31572433)the National Key R&D Program(2016YFD0501203)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0862)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Background: It is well known that feeding a high concentrate(HC) diet to lactating ruminants likely induces subacute ruminal acidosis(SARA) and leads to a decrease in milk fat production. However, the effects of feeding a HC diet for long periods on milk fatty acids composition and the mechanism behind the decline of milk fat still remains poorly understood. The aim of this study was to investigate the impact of feeding a HC diet to lactating dairy goats on milk fat yield and fatty acids composition with an emphasis on the mechanisms underlying the milk fat depression. Seventeen mid-lactating dairy goats were randomly allocated to three groups. The control treatment was fed a low-concentrate diet(35% concentrate, n = 5, LC) and there were two high-concentrate treatments(65% concentrate, HC), one fed a high concentrate diet for a long period(19 wks, n = 7, HL); one fed a high concentrate diet for a short period of time(4 wk, n = 5, HS). Milk fat production and fatty acids profiles were measured. In order to investigate the mechanisms underlying the changes in milk fat production and composition,the gene expression involved in lipid metabolism and DNA methylation in the mammary gland were also analyzed.Results: Milk production was increased by feeding the HC diet in the HS and HL groups compared with the LC diet(P 〈 0.01), while the percentage of milk fat was lower in the HL(P 〈 0.05) but not in the HS group. The total amount of saturated fatty acids(SFA) in the milk was not changed by feeding the HC diet, whereas the levels of unsaturated fatty acids(UFA) and monounsaturated fatty acids(MUFA) were markedly decreased in the HL group compared with the LC group(P 〈 0.05). Among these fatty acids, the concentrations of C15:0(P 〈 0.01), C17:0(P 〈 0.01), C17:1(P 〈 0.01), C18:1 n-9 c(P 〈 0.05), C18:3 n-3 r(P 〈 0.01) and C20:0(P 〈 0.01) were markedly lower in the HL group, and the concentrations of C20:0(P 〈 0.05) and C18:3 n-3 r(P 〈 0.01) were lower in the HS group compared with the LC group. However, the concentrations of C18:2 n-6 c(P 〈 0.05) and C20:4 n-6(P 〈 0.05) in the milk fat were higher in the HS group. Real-time PCR results showed that the m RNA expression of the genes involved in milk fat production in the mammary gland was generally decreased in the HL and HS groups compared with the LC group. Among these genes, ACSL1, ACSS1 & 2, ACACA, FAS, SCD, FADS2, and SREBP1 were downregulated in the mammary gland of the HL group(P 〈 0.05), and the expressions of ACSS2, ACACA, and FADS2 m RNA were markedly decreased in the HS goats compared with the LC group(P 〈 0.05). In contrast to the gene expression, the level of DNA methylation in the promoter regions of the ACACA and SCD genes was increased in the HL group compared with the LC group(P 〈 0.05). The levels of ACSL1 protein expression and FAS enzyme activity were also decreased in the mammary gland of the HL compared with the LC group(P 〈 0.05).Conclusions: Long-term feeding of a HC diet to lactating goats induced milk fat depression and FAs profile shift with lower MUFAs but higher SFAs. A general down-regulation of the gene expression involved in the milk fat production and a higher DNA methylation in the mammary gland may contribute to the decrease in milk fat production in goats fed a HC diet for long time periods.
基金Key Research and Development Project of Hainan Province(ZDYF2021XDNY174)Science and Technology Major Project of Inner Mongolia(2021ZD0023–1)National Transgenic Key Project of the Ministry of Agriculture of China(2018ZX0800801B)。
文摘Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.
基金supported by National Key Basic Research and Development Program of China(No.2006CB102105)National High Technology Research and Development Program of China(No.2006AA10Z139)+1 种基金National Natural Science Foundation of China(No.30540052 and No.30871773)Beijing Natural Sciences Foundation of China(No.6062023)
文摘On the basis of the ovine bone morphogenetic protein 15(BMP15)gene,two pairs of primers(PI and P2)were designed to amplify exons 1 and 2 of the BMP15 gene in five randomly selected does of both Angora and Jining Grey goats.The sequences of BMP15 exon 1(P1 amplification)of Angora and Jining Grey goats were identical.There was a 3-nucleotide(CTT)insertion in positions 268 to 270 of goat BMP 15 exon1 compared with that of sheep(GenBank accession number AF236078),which caused a leucine insertion in the 12th position of amino acid sequence.Sequence length of goat BMP 15 exon 2(P2 amplification)was identical with that of sheep(AF236079),but there were seven nucleotide and four amino acid changes between goat and sheep.The nucleotide in the 963rd position of BMP15 exon 2 was A for Angora goat and sheep,and G for Jining Grey goat.Based on this A963G mutation,primer pair P3 was designed to detect single nucleotide polymorphism of BMP15 exon 2 in breeds of high prolificacy(Jining Grey),moderate prolificacy(Boer)and low prolificacy(Angora and Inner Mongolia Cashmere)by polymerase chain reactionsingle strand conformation polymorphism(PCR-SSCP).Three genotypes(AA,AG and GG)were detected in Jining Grey goats,two genotypes(AG and GG)in Boer,and only the AA genotype in Angora and Inner Mongolia Cashmere goats.Sequencing revealed one mutation(A963G)in genotype GG compared with genotype AA,and this mutation resulted in an amino acid change of serine→glycine(S300G).In Jining Grey goats,frequencies of AA,AG and GG genotypes were 0.008,0.059 and 0.933,respectively.Genotypic distributions of the BMP 15 gene were significantly different(P<0.05 or P<0.001)between Jining Grey and Boer,Angora,and Inner Mongolia Cashmere goats.In Jining Grey goats,the does with the GG genotype had 0.71(P<0.05)or 1.57(P<0.05)additional kids than did those with AG or AA genotypes,and does with the AG genotype had 0.86(P<0.05)more kids than did those with the AA genotype.These results tentatively indicate that the BMP15 gene is either a major gene that affects prolificacy in Jining Grey goats,or may be a molecular marker in close linkage with such a gene.
基金supported by National High Technology Research and Development Program of China(No. 2006AA 10Z 139)National Key Basic Research and Development Program of China(No.2006CB 102105)+3 种基金National Key Technology R&D Program of China(No. 2008BADB2B01,2006BAD01A 11,2006BAD 13B08)National Natural Science Foundation of China(No. 30540052)Beijing Natural Sciences Foundation of China(No.6062023)the special fund for basic scientific research of Institute of Animal Science,Chinese Academy of Agricultural Sciences(No.ywf-rc-1)
文摘PCR-SSCP was used to detect mutations of bone morphogenetic protein 15(BMP15) gene in both high prolificacy(Small Tail Han sheep,Hu sheep,Jining Grey goat and Boer goat) and low prolificacy breeds(Dorset sheep,Texel sheep,Inner Mongolia Cashmere goat and Angora goat).Both the nucleotide sequences and the amino acid sequences were compared in amplification fragments of both Small Tail Han sheep and Jining Grey goat.The results indicated that none of the four sheep and the four goat breeds carried the same FecX<sup>R</sup> mutation of the BMP15 gene as do Rasa Aragonesa sheep.The nucleotide sequence of Small Tail Han sheep was completely identical with that of the sheep BMP15 sequence(GenBank AF236079,NM<sub>0</sub>01114767).Three base substitutions(T529G,C530G and T576C) and two amino acid changes(V155G and S171P) were found in Jining Grey goat compared with Small Tail Han sheep.The FecX<sup>R</sup> mutation of the BMP15 gene had no significant effect on high prolificacy of Small Tail Han sheep, Hu sheep,Jining Grey goat and Boer goat.
基金supported by grant from the National Natural Science Foundation of China (30860191)the Major Projects for New Varieties of Genetically Modified Organisms, China (2008ZX08008-002)the Training Fund for the Basic Sciences of China(J0730648)
文摘As one member of the Ras super family, Rheb is an upstream regulator of mTOR signaling pathway, which regulates the process of cell-growth, proliferation and differentiation. In order to study the relationship between Rheb and mTOR in Inner Mongolian Cashmere goat (Capra hircus) cells, Ras homolog enriched in brain (Rheb) gene eDNA was amplified by RT-PCR. It is 555 bp in length and includes the complete ORF encoding 184 amino acids (GenBank accession no. HM569224). The full eDNA nucleotide sequence has a 99% identity with that of sheep, 98% with cattle and 93% with human while their amino acids sequence shares identity with 98, 97 and 97% of them, correspondingly. The bioinformatics analysis showed that Rheb has a Ras family domain, two casein kinase II phosphorylation sites, two ATP/GTP-binding sites motifA (P-loop), a prenyl group binding site (CAAX box). Tissue-specific expression analysis performed by semi- quantitative RT-PCR. The Rheb gene was expressed in all the tested tissues and the highest level ofmRNA accumulation was detected in brain, suggesting that Rheb played an important role in goat cells.
基金Supported by the National Transformation Fund for Agricultural Science and Technology Achievements(2012GB2F200408)Guizhou Agricultural Science and Technology Research(NY[2011]3064)+3 种基金Science and Technology Cooperation Program among Guizhou Science and Technology Agency,Bijie Government and Kunming Branch Chinese Academy of Sciences(2010-05)Guizhou High-level Personnel Research Conditions Special Assistant(TZJF-2010-034)Guizhou Agriculture Animal and Plant Breeding Special([2009]019)Guizhou Bijie Agricultural Science And Technology Research([2012]23)
文摘Guizhou black goat is the second-largest breed of goat in Guizhou, an important part of ecosystem of karst region. Constructing cladogTam of black goat and Guizhou local goat with molecular biological technique, we found some functional genes related to reproduction and growth of black goat, such as FSHR, LHβ, GDF9, MSTN, POU1F1, GFI1B, etc. In view of the genetic relations between Guizhou black goat and other local goats, we reviewed the research status and progress of gene polymorphism of FSHR, LHβ,GDF9, MSTN, POU1F1, GFI1B, and prospected the research field of molecular properties of the breed resource.
文摘The procedure of somatic cell nuclear transfer (SCNT) is likely to affect the expression level of growth-related genes especially imprinting genes. In this study, expressions of growth-related genes including three imprinting genes (H19, IGF2, and IGF2R) and four non-imprinting genes (IGF1, IGFIR, GHR, and GHSR) in adult nuclear transferred (NT) goats were investigated by real-time PCR. The expressions of these genes in adult clones were found largely normal, but IGF2R and IGFIR were more highly expressed in cloned goats than in non-NT goats (P 〈 0.01). Analysis on mono-allelic expression pattern of imprinting genes indicated that mono-allelic expression patterns of H19 and IGF2 in cloned goats were similar to that in non-NT goats. In addition, the sequence of goat IGF2 gene and the putative amino acid sequence were obtained. The 986 nucleotide cDNA of goat IGF2 gene contained an open-reading frame of 540 nucleotides coding for 179 amino acids. Both cDNA sequence and amino acid sequence of IGF2 in goat showed their higher homology with that in sheep than in cattle; the partial cDNA fragments of H19, IGF2R, GHSR, IGFIR, and GHR in goat were also cloned and sequenced, which shared higher sequence identities with those in sheep than in cattle.
基金supported by the Ministry of Science and Technology of China (2007AA10Z151,2007BAD56B03,and 30660122)the Inner Mongolia Natural Science Foundation,China (2007NM2010)
文摘Hoxc13 has an important role in controlling hair formation. In this study, we examine the Hoxc13 RNA expression pattern of skin during embryo development. The result indicated that changes of the Hoxe13 gene expression and thickness of skin have a similar trend during hair follicle morphogenesis. In interpreting these results, we investigated whether the regulation motifs is in Hoxc13 intron, which is a 5.4 kb fragment. To blast with other mammals, we found a very conservative region in all mammal animals and two regions in livestock, such as cow, sheep, horse, dog, and so on, which are not in other Hox genes. We have examined putative pre-miRNA in this region, providing an entry point for elucidating currently unknown mechanisms that are required for regulating quantitative levels of Hoxc13 gene expression.