期刊文献+
共找到16,582篇文章
< 1 2 250 >
每页显示 20 50 100
Comparison of large deformation failure control method in a deep gob-side roadway: A theoretical analysis and field investigation
1
作者 WANG Jiong LIU Peng +2 位作者 HE Man-chao LIU Yi-peng DU Chang-xin 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3084-3100,共17页
Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has alw... Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has always significantly influenced deep mining safety.In this article we used the research background of the large deformation failure roadway of Fa-er Coal Mine in Guizhou Province of China to propose two control methods:bolt-cable-mesh+concrete blocks+directional energy-gathering blasting(BCM-CBDE method)and 1st Generation-Negative Poisson’s Ratio(1G NPR)cable+directional energy-gathering blasting+dynamic pressure stage support(πgirder+single hydraulic prop+retractable U steel)(NPR-DEDP method).Meantime,we compared the validity of the large deformation failure control method in a deep gob-side roadway based on theoretical analysis,numerical simulations,and field experiments.The results show that directional energy-gathering blasting can weaken the pressure acting on the concrete blocks.However,the vertical stress of the surrounding rock of the roadway is still concentrated in the entity coal side and the concrete blocks,showing a’bimodal’distribution.BCM-CBDE method cannot effectively control the stability of the roadway.NPR-DEDP method removed the concrete blocks.It shows using the 1G NPR cable with periodic slipping-sticking characteristics can adapt to repeated mining disturbances.The peak value of the vertical stress of the roadway is reduced and transferred to the deep part of the surrounding rock mass,which promotes the collapse of the gangue in the goaf and fills the goaf.The pressure of the roadway roof is reduced,and the gob-side roadway is fundamentally protected.Meantime,the dynamic pressure stage support method withπgirder+single hydraulic prop+retractable U steel as the core effectively protects the roadway from dynamic pressure impact when the main roof is periodically broken.After the on-site implementation of NPR-DEDP method,the deformation of the roadway is reduced by more than 45%,and the deformation rate is reduced by more than 50%. 展开更多
关键词 Deep gob-side roadway Deformation failure control Roof structure mechanical model Stress field distribution Mining safety .Failure mode.
下载PDF
Spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway with model experiments 被引量:7
2
作者 Li Yuanhai Zhang Qi +1 位作者 Lin Zhibin Wang Xiaodong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期895-902,共8页
A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining p... A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method. 展开更多
关键词 Model experiment Digital photogrammetry gob-side roadway Spatiotemporal evolution rule Stability control and combined support
下载PDF
Structural effect of a soft-hard backfill wall in a gob-side roadway 被引量:1
3
作者 Wang Hongsheng Zhang Dongsheng Fan Gangwei 《Mining Science and Technology》 EI CAS 2011年第3期313-318,共6页
The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the... The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft-hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show thatChe deformation of the structure of the soft-hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effec- tively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall. 展开更多
关键词 gob-side roadway Backfill wall Structural effect Dynamic effectMain roof
下载PDF
Ground response and failure mechanism of gob-side entry by roof cutting with hard main roof
4
作者 ZHU Heng-zhong XU Lei WEN Zhi-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2488-2512,共25页
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi... This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices. 展开更多
关键词 gob-side entry by roof cutting ground response failure mechanism following mining states control hard main roof
下载PDF
Surrounding rock control of gob-side entry driving with narrow coal pillar and roadway side sealing technology in Yangliu Coal Mine 被引量:7
5
作者 Zha Wenhua Shi Hao +1 位作者 Liu San Kang Changhao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期819-823,共5页
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara... Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition. 展开更多
关键词 Narrow coal PILLAR gob-side ENTRY driving SURROUNDING rock control roadway SIDE sealing technology
下载PDF
Comparative study of model tests on automatically formed roadway and gob-side entry driving in deep coal mines 被引量:18
6
作者 Qi Wang Manchao He +4 位作者 Shucai Li Zhenhua Jiang Yue Wang Qian Qin Bei Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期591-601,共11页
Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off str... Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars. 展开更多
关键词 Automatically formed roadway Roof cutting Bolt grouting roadway control Model test
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
7
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Analysis and application in controlling surrounding rock of support reinforced roadway in gob-side entry with fully mechanized mining 被引量:10
8
作者 DENG Yuehua TANG Jianxin +2 位作者 ZHU Xiangke FU Yong DAI Zhangyin 《Mining Science and Technology》 EI CAS 2010年第6期839-845,共7页
In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of g... In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of gob-side entry technology. The concrete has a long initial setting time and a low initial strength. So it is difficult to control the surrounding rock. In this paper, we analyze the effect of using roadside cable to reinforce supporting in gob-side entry surrounding rock controlling based on elas-tic-plastic and material mechanics knowledge. And then we propose a scheme that cable is used to reinforce roadside supporting and a single hydraulic prop is used as the temporary supporting in gob side. Using the numerical simulation software FLAC2D, we numerically simulated supporting scheme. Results of both the 2D modeling and the industrial test on No.3117 face in Jingang Mine prove that the scheme is feasible. The results show that the technology of protecting the roadway in gob-entry retained efficiently make up the deficiency of roadside packing with ordinary concrete, effectively control the roof strata and acquire a good result of retaining roadway. 展开更多
关键词 gob-side entry retained surrounding rock controlling cable reinforced roadside supporting FLAC2D single hydraulic prop roadside support pumping of concrete
下载PDF
Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock
9
作者 Shijun Zhao Qing Zhang +3 位作者 Yusong Miao Weizhao Zhang Xinbo Zhao Wei Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3167-3187,共21页
The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel func... The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements. 展开更多
关键词 roadway surrounding rock PERIDYNAMICS heterogeneous material fracture analysis numerical simulation
下载PDF
Failure mechanism and safety control technology of a composite strata roadway in deep and soft rock masses:a case study
10
作者 ZHAO Chengwei ZHOU Hui +3 位作者 SUN Xiaoming ZHANG Yong MIAO Chengyu WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2427-2444,共18页
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe... The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways. 展开更多
关键词 3DEC Composite strata roadway Soft rock NPR bolt and cable Asymmetric large deformation
下载PDF
The Impact of Sea Level Rise on Roadway Design and Evacuation Routes in Delaware
11
作者 Jack Palevich Ardeshir Faghri Ahmet Karakurt 《American Journal of Climate Change》 2024年第1期69-82,共14页
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans... As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas. 展开更多
关键词 Sea Level Rise roadway Design Evacuation Routes
下载PDF
Bearing mechanism of roof and rib support structure in automatically formed roadway and its support design method
12
作者 JIANG Bei WANG Ming-zi +4 位作者 WANG Qi XIN Zhong-xin XING Xue-yang DENG Yu-song YAO Liang-di 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2467-2487,共21页
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ... Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China. 展开更多
关键词 automatically roadway with non-pillar confined lightweight concrete roof and rib support mechanical model bearing behaviour
下载PDF
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
13
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Surrounding Rock Control Technology of Strong Dynamic Pressure Roadway in Hudi Coal Industry
14
作者 Yixue Jia 《World Journal of Engineering and Technology》 2024年第2期362-372,共11页
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i... Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions. 展开更多
关键词 Deep roadway Combined Support Surrounding Rock Control Soft Rock roadway
下载PDF
Research on the width of filling body in gob-side entry retaining with high-water materials 被引量:10
15
作者 Chang Qingliang Tang Weijun +1 位作者 Xu Ying Zhou Huaqiang 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期519-524,共6页
To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained road... To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained roadway, based on the elastic thin plate theory of the stope roof. The stress state and mechanical response of the filling body along the remained roadway were studied. Specifically, firstly, the supporting pressure of the coal pillar which is on one side of the gob-side remained roadway was deduced.Also, an equation that is used to calculate the width of the balance area in the stress limit state was acquired. Then, an equation that is used to calculate the roof cutting force on one side of the supporting body was obtained. By using FLAC3D, the authors investigated the displacement field and stress field response laws of rock masses around the roadway with different filling body's widths. The results show that with the filling body's width increasing, the supporting ability of the filling body increases.Meanwhile, the rock mass displacement around the roadway and the filling body deformation decrease.The better the filling body's supporting effect is, the higher the roof cutting force will be. When the filling body's width is larger than 3.0 m, its internal bearing ability becomes stable and the filling body's deformation became non-apparent. Finally, analysis shows that the filling body's width should be 2.5 m.Furthermore, the authors conducted field tests in the supply roadway 1204, using high-water materials and acquired expected outcomes. 展开更多
关键词 gob-side entry retaining High-water materials Numerical simulation Support along the roadway
下载PDF
Stress environment of entry driven along gob-side through numerical simulation incorporating the angle of break 被引量:10
16
作者 Guorui Feng Pengfei Wang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期189-196,共8页
Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution ... Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation. 展开更多
关键词 STRESS ENVIRONMENT ANGLE of BREAK gob-side Numerical simulation Double-yield
下载PDF
Rock burst mechanism analysis in an advanced segment of gob-side entry under different dip angles of the seam and prevention technology 被引量:26
17
作者 Yang Zengqiang Liu Chang +2 位作者 Tang Shichuan Dou Linming Cao Jinglong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期891-899,共9页
In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking ... In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious. 展开更多
关键词 ROCK BURST Change of DIP angle gob-side ENTRY Dynamic and static combined load Cooperative control Electromagnetic emission
下载PDF
Superposed disturbance mechanism of sequential overlying strata collapse for gob-side entry retaining and corresponding control strategies 被引量:13
18
作者 HAN Chang-liang ZHANG Nong +2 位作者 RAN Zhi GAO Rui YANG Hou-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2258-2271,共14页
Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side en... Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions. 展开更多
关键词 sequential roof collapse gob-side entry retaining superposed disturbance key stratum stability control
下载PDF
Position-optimization on retained entry and backfilling wall in gob-side entry retaining techniques 被引量:7
19
作者 Xiaowei Feng Nong Zhang 《International Journal of Coal Science & Technology》 EI 2015年第3期186-195,共10页
This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechan... This study investigates the stability problem of gob-side entry retaining (GER) and backfilling wall which located under the key block B. Based on the combined research of elastic-plastic mechanics, structure mechanics and modern theory of mining-induced pressure, the caving characteristic and roof structure over the GER were analyzed, and the vertical force and the torque on retained entry roof were also derived as the position for the retained entry varies. On the basis of the specific geology in Huainan mining area, the results indicate that a relatively more stable position for retained entry neighbors the hinge point of block A and B, and it also located at a scope ranging from this point to the one-third length of block B in horizontal direction. As to appropriate position for backfilling wall, this study recommends partial- road-in backfilling method for GER. Field trial conducted at panel face 12418 of Xieqiao Mine demonstrates that the recommended width for original entry is 3.6 m and the preferred width proportion between original retained entry and original entry is 75 % or so whereas the avoidable one is 88 % or so. These findings provide qualitative references to the mines which share similar geology as what Huainan mining area characterized. 展开更多
关键词 Mining engineering Position-optimization gob-side entry retaining Partial-road-in backfilling
下载PDF
Stress and deformation analysis of gob-side pre-backfill driving procedure of longwall mining:a case study 被引量:1
20
作者 Rui Wu Penghui Zhang +2 位作者 Pinnaduwa H.S.W.Kulatilake Hao Luo Qingyuan He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1351-1370,共20页
At present,non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining(GER)procedure or the gob-side entry driving(GED)procedure.The GER procedure leads to difficultie... At present,non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining(GER)procedure or the gob-side entry driving(GED)procedure.The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels.A narrow coal pillar about 5-7 m must be left in the GED procedure;therefore,it causes permanent loss of some coal.The gob-side pre-backfill driving(GPD)procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure.The FLAC^(3D) software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires"twice excavation and mining".The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the"primary excavation".The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the"primary mining".The highest vertical stresses of 32.6 and 23.1 MPa,compared to the in-situ stress of 10.5 MPa,appeared in the backfill wall and coal seam,respectively.After the"primary mining",the peak vertical stress under the coal seam at the floor level was slightly higher(18.1 MPa)than that under the backfill(17.8 MPa).After the"secondary excavation",the peak vertical stress under the coal seam at the floor level was slightly lower(18.7 MPa)than that under the backfill(19.8 MPa);the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm,respectively.During the"secondary mining",the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel.The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face;the roof sag increased to 828.4 mm at the working face.The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of"twice excavation and mining"of the GPD procedure.The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway.The results provide scientific insight for engineering practice of the GPD procedure. 展开更多
关键词 gob-side pre-backfill driving procedure Floor heave roadway stability Stress distribution Abutment pressure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部