A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films inv...A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SELLS). R was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.展开更多
We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispe...We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.展开更多
Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of develop...Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of developing high-reflectivity mirrors. The deposition process was first optimized. Films were fabricated at different sputtering powers (15, 40, 80, and 120 W) and characterized using grazing incidence X-ray reflectometry, X-ray diffraction, and atomic force microscopy. The results showed that all the films were highly textured, having a dominant Au (111) orientation, and the film deposited at 80 W had the lowest surface roughness. Subsequently, post-deposition annealing from 100 to 200℃ in a vacuum was performed on the films deposited at 80 W to investigate the effect of annealing on the microstructure and surface roughness of the films. The grain size, surface roughness, and their relationship were investigated as a function of annealing temperature. AFM and XRD results revealed that at annealing temperatures of 175 ℃ and below, microstructural change of the films was mainly manifested by the elimination of voids. At annealing temperatures higher than 175℃, grain coalescence occurred in addition to the void elimination, causing the surface roughness to increase.展开更多
The spectral characteristics of surface plasmon resonance (SPR) in nanosized gold films were studied with method of internal reflection in the Kretschmann geometry. (For more information,please refer to the PDF.)
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon senso...We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.展开更多
A novel type of glucose sensor was fabricated based on a glucose oxidase(GOD)-N,N-dimethtylformamide(DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous(3DOM) gold film electrode.The immobilized...A novel type of glucose sensor was fabricated based on a glucose oxidase(GOD)-N,N-dimethtylformamide(DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous(3DOM) gold film electrode.The immobilized GOD exhibits a pair of well-defined reversible peaks in 50 mM pH 7.0 phosphate buffer solutions(PBS),which could be attributed to the redox of flavin adenine dinucleotide(FAD) in GOD.The research results show that ionic liquid([BMIm][BF4]),DMF and 3DOM gold film are crucial for GOD to exhibit a pair of stable and reversible peaks.It is believed that the large active area of 3DOM gold film can increase the amount of immobilized GOD.Simultaneously,the application of IL enhances the stability of GOD and facilitates the electron transfer between GOD and the electrode.The synergetic effect of DMF can help the GOD to maintain its bioactivity better.GOD immobilized on the electrode exhibits the favorable electrocatalytic property to glucose,and the prepared sensor has a linear range from 10 to 125 nM with a detection limit of 3.3 nM at a signal-to-noise ratio of 3σ.The apparent Km(Michaelis-Menten constant) for the enzymatic reaction is 0.018 mM.展开更多
The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizin...The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.展开更多
A novel method based on microbe modification has been employed to prepare gold thin film electrode. The preparation method is simple and the electrode obtained is stable and very sensitive in determining heavy metal i...A novel method based on microbe modification has been employed to prepare gold thin film electrode. The preparation method is simple and the electrode obtained is stable and very sensitive in determining heavy metal ions. The quantitation limit of Cu2+ is 0.05 ng/mL.展开更多
In this work, a 200-nm-thick gold film with a 10-nm-thick chromium layer used as an adhesive layer is fabricated on fused silica by the electron beam evaporation method. The effects of annealing time at 300℃ on the s...In this work, a 200-nm-thick gold film with a 10-nm-thick chromium layer used as an adhesive layer is fabricated on fused silica by the electron beam evaporation method. The effects of annealing time at 300℃ on the structure, morphology and stress of the film are studied. We find that chromium could diffuse to the surface of the film by formatting a solid solution with gold during annealing. Meanwhile, chromium is oxidized on the surface and diffused downward along the grain grooves in the gold film. The various operant mechanisms that change the residual stresses of gold films for different annealing times are discussed.展开更多
We experimentally investigate the effects of the surface roughness of gold thin films on the properties of surface plasmon resonance. By annealing at different temperatures, film samples with different surface morphol...We experimentally investigate the effects of the surface roughness of gold thin films on the properties of surface plasmon resonance. By annealing at different temperatures, film samples with different surface morphologies are obtained. Specifically, due to the diffusion of the gold atoms towards the films' surface, the surface root- mean-square roughness decreases with the increasing annealing temperature. Then, we measure the surface plasmon resonance of the samples. The results show that the resonance angle of the surface plasmon resonance is sensitive to the root-mean-square roughness, and it gradually decreases by reducing the surface root-mean-square roughness.展开更多
Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin f...Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.展开更多
Au films with a thickness of about 300 nm were deposited on SiO_2/Si(100) andmica substrates by dc sputtering. X-ray diffraction spectroscopy and field emission scanningelectron microscopy were used to analyze the str...Au films with a thickness of about 300 nm were deposited on SiO_2/Si(100) andmica substrates by dc sputtering. X-ray diffraction spectroscopy and field emission scanningelectron microscopy were used to analyze the structure and internal stress of the Au films. Thefirms grown on SiO_2/Si(100) show a preferential orientation of [111] in the growth direction.However the films grown on mica have mixture crystalline orientations of [111], [200], [220] and[311] in the growth direction and the orientations of [200] and [311] are slightly more than thoseof [111] and [220]. An internal stress in the films grown on SiO_2/Si(100) is tensile. For Au filmsgrown on mica the internal stresses in the [111]- and [311]-orientation grains are compressive whilethose in the [200]- and [220]-orientation grains are tensile. Au films grown SiO_2/Si(100) havesome very large grains with a size of about 400 nm and have a wider grain size distribution comparedwith those grown on mica.展开更多
Based on the three-dimensional dispersive finite difference time domain method and Maxwell stress tensor equation,the optical trapping properties of nanoparticle placed on the gold film with periodic circular holes ar...Based on the three-dimensional dispersive finite difference time domain method and Maxwell stress tensor equation,the optical trapping properties of nanoparticle placed on the gold film with periodic circular holes are investigated numerically. Surface plasmon polaritons are excited on the metal-dielectric interface, with particular emphasis on the crucial role in tailoring the optical force acting on a nearby nanoparticle. Utilizing a first order corrected electromagnetic field components for a fundamental Gaussian beam, the incident beam is added into the calculation model of the proposed method. To obtain the detailed trapping properties of nanoparticle, the selected calculations on the effects of beam waist radius, sizes of nanoparticle and circular holes, distance between incident Gaussian beam and gold film, material of nanoparticle and polarization angles of incident wave are analyzed in detail to demonstrate that the optical-trapping force can be explained as a virtual spring which has a restoring force to perform positive and negative forces as a nanoparticle moves closer to or away from the centers of circular holes. The results of optical trapping properties of nanoparticle in the vicinity of the gold film could provide guidelines for further research on the optical system design and manipulation of arbitrary composite nanoparticles.展开更多
Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method...Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.展开更多
Nano-composite films of Au particles in Teflon were obtained by thermal vacuum deposition. The obtained films were characterized by the different shapes and dimensions of the inclusion particles. Absorption spectra of...Nano-composite films of Au particles in Teflon were obtained by thermal vacuum deposition. The obtained films were characterized by the different shapes and dimensions of the inclusion particles. Absorption spectra of the films were measured in-situ. A model for the calculation of the optical properties of the nano-composite thin films with an inho-mogeneous distribution of the inclusions along the thickness of the film is proposed. Absorption properties of inclusions were analyzed by considering the local field interaction. The calculated absorption profiles are compared with the experimentally obtained absorption profiles. This comparison gives a possibility to draw conclusions about the concentration, shapes and shape distributions of the inclusion particles. For example, the films obtained by duration deposition are characterized by inclusions having the shape of prolate ellipsoids oriented normally to surface of the film.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.60171008)Shanghai Science and Technology Committee(No.0214nm005,No.0452nm087).
文摘A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SELLS). R was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61177079)the Open Fund of Key Laboratory of Electronics Engineering,College of Heilongjiang Province,China (Grant No. DZZD20100014)the Youth Science Foundation of Heilongjiang University,China (Grant No. QL200914)
文摘We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.
基金supported by the National Key R&D Program of China(Nos.2016YFA0401304 and 2017YFA0403302)the National Natural Science Foundation of China(NSFC)(Nos.61621001,11505129,and U1732268)
文摘Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of developing high-reflectivity mirrors. The deposition process was first optimized. Films were fabricated at different sputtering powers (15, 40, 80, and 120 W) and characterized using grazing incidence X-ray reflectometry, X-ray diffraction, and atomic force microscopy. The results showed that all the films were highly textured, having a dominant Au (111) orientation, and the film deposited at 80 W had the lowest surface roughness. Subsequently, post-deposition annealing from 100 to 200℃ in a vacuum was performed on the films deposited at 80 W to investigate the effect of annealing on the microstructure and surface roughness of the films. The grain size, surface roughness, and their relationship were investigated as a function of annealing temperature. AFM and XRD results revealed that at annealing temperatures of 175 ℃ and below, microstructural change of the films was mainly manifested by the elimination of voids. At annealing temperatures higher than 175℃, grain coalescence occurred in addition to the void elimination, causing the surface roughness to increase.
文摘The spectral characteristics of surface plasmon resonance (SPR) in nanosized gold films were studied with method of internal reflection in the Kretschmann geometry. (For more information,please refer to the PDF.)
基金Project supported by the National Key Research Program of China(Grant No.2011ZX01015-001)
文摘We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
基金Supported by the National Natural Science Foundation of China (Grant No. 20635020)
文摘A novel type of glucose sensor was fabricated based on a glucose oxidase(GOD)-N,N-dimethtylformamide(DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous(3DOM) gold film electrode.The immobilized GOD exhibits a pair of well-defined reversible peaks in 50 mM pH 7.0 phosphate buffer solutions(PBS),which could be attributed to the redox of flavin adenine dinucleotide(FAD) in GOD.The research results show that ionic liquid([BMIm][BF4]),DMF and 3DOM gold film are crucial for GOD to exhibit a pair of stable and reversible peaks.It is believed that the large active area of 3DOM gold film can increase the amount of immobilized GOD.Simultaneously,the application of IL enhances the stability of GOD and facilitates the electron transfer between GOD and the electrode.The synergetic effect of DMF can help the GOD to maintain its bioactivity better.GOD immobilized on the electrode exhibits the favorable electrocatalytic property to glucose,and the prepared sensor has a linear range from 10 to 125 nM with a detection limit of 3.3 nM at a signal-to-noise ratio of 3σ.The apparent Km(Michaelis-Menten constant) for the enzymatic reaction is 0.018 mM.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921400 and 2011CB921802)the National Natural Science Foundation of China(Grant Nos.11374057,11434003,and 11421404)
文摘The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.
文摘A novel method based on microbe modification has been employed to prepare gold thin film electrode. The preparation method is simple and the electrode obtained is stable and very sensitive in determining heavy metal ions. The quantitation limit of Cu2+ is 0.05 ng/mL.
基金supported by the National Natural Science Foundation of China(Grant No.61405225)
文摘In this work, a 200-nm-thick gold film with a 10-nm-thick chromium layer used as an adhesive layer is fabricated on fused silica by the electron beam evaporation method. The effects of annealing time at 300℃ on the structure, morphology and stress of the film are studied. We find that chromium could diffuse to the surface of the film by formatting a solid solution with gold during annealing. Meanwhile, chromium is oxidized on the surface and diffused downward along the grain grooves in the gold film. The various operant mechanisms that change the residual stresses of gold films for different annealing times are discussed.
基金supported by the Heilongjiang Postdoctoral Science Foundation(No.LBH-Z12227)the National Natural Science Foundation of China(Nos.61275117, 51301055,61177079,and 61205071)+1 种基金the Heilongjiang Province Science Foundation(No.F201112)the Foundation of the Key Laboratory of Electronics Engineering,College of Heilongjiang,Province of China
文摘We experimentally investigate the effects of the surface roughness of gold thin films on the properties of surface plasmon resonance. By annealing at different temperatures, film samples with different surface morphologies are obtained. Specifically, due to the diffusion of the gold atoms towards the films' surface, the surface root- mean-square roughness decreases with the increasing annealing temperature. Then, we measure the surface plasmon resonance of the samples. The results show that the resonance angle of the surface plasmon resonance is sensitive to the root-mean-square roughness, and it gradually decreases by reducing the surface root-mean-square roughness.
基金This research was financially supported by China Scholar-ship Council and the Natural Science Foundation of Hubei Province (Project 2000J002)
文摘Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.
文摘Au films with a thickness of about 300 nm were deposited on SiO_2/Si(100) andmica substrates by dc sputtering. X-ray diffraction spectroscopy and field emission scanningelectron microscopy were used to analyze the structure and internal stress of the Au films. Thefirms grown on SiO_2/Si(100) show a preferential orientation of [111] in the growth direction.However the films grown on mica have mixture crystalline orientations of [111], [200], [220] and[311] in the growth direction and the orientations of [200] and [311] are slightly more than thoseof [111] and [220]. An internal stress in the films grown on SiO_2/Si(100) is tensile. For Au filmsgrown on mica the internal stresses in the [111]- and [311]-orientation grains are compressive whilethose in the [200]- and [220]-orientation grains are tensile. Au films grown SiO_2/Si(100) havesome very large grains with a size of about 400 nm and have a wider grain size distribution comparedwith those grown on mica.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61701382,61601355,and 61571355)the China Postdoctoral Science Foundation(Grant No.2016M602770)the Xi’an Technological University Principal Foundation Key Project,China(Grant No.XAGDXJJ18001)
文摘Based on the three-dimensional dispersive finite difference time domain method and Maxwell stress tensor equation,the optical trapping properties of nanoparticle placed on the gold film with periodic circular holes are investigated numerically. Surface plasmon polaritons are excited on the metal-dielectric interface, with particular emphasis on the crucial role in tailoring the optical force acting on a nearby nanoparticle. Utilizing a first order corrected electromagnetic field components for a fundamental Gaussian beam, the incident beam is added into the calculation model of the proposed method. To obtain the detailed trapping properties of nanoparticle, the selected calculations on the effects of beam waist radius, sizes of nanoparticle and circular holes, distance between incident Gaussian beam and gold film, material of nanoparticle and polarization angles of incident wave are analyzed in detail to demonstrate that the optical-trapping force can be explained as a virtual spring which has a restoring force to perform positive and negative forces as a nanoparticle moves closer to or away from the centers of circular holes. The results of optical trapping properties of nanoparticle in the vicinity of the gold film could provide guidelines for further research on the optical system design and manipulation of arbitrary composite nanoparticles.
基金This work was supported by the Natural Science Foundation of Hubei Province(Project No.2000J002)
文摘Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.
文摘Nano-composite films of Au particles in Teflon were obtained by thermal vacuum deposition. The obtained films were characterized by the different shapes and dimensions of the inclusion particles. Absorption spectra of the films were measured in-situ. A model for the calculation of the optical properties of the nano-composite thin films with an inho-mogeneous distribution of the inclusions along the thickness of the film is proposed. Absorption properties of inclusions were analyzed by considering the local field interaction. The calculated absorption profiles are compared with the experimentally obtained absorption profiles. This comparison gives a possibility to draw conclusions about the concentration, shapes and shape distributions of the inclusion particles. For example, the films obtained by duration deposition are characterized by inclusions having the shape of prolate ellipsoids oriented normally to surface of the film.