Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide suffici...The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.展开更多
Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Qu...Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points.展开更多
In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main ...In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.展开更多
We calculate the electron impact excitation of Ni-like gold by using the Dirac R-matrix theory, and the cor- responding collision strengths and effective collision strengths are obtained. In the calculations of the le...We calculate the electron impact excitation of Ni-like gold by using the Dirac R-matrix theory, and the cor- responding collision strengths and effective collision strengths are obtained. In the calculations of the level energy, (1sZ2sZ2p6)3sZ3p63d10, 3s23p63d94/, 3s23p53d104/, and 3s3p63d104/(l = 0, 1,2,3) configurations are included and 107 fine-structure levels are generated. In the calculations of the collision strengths, only the first 59 levels are included. Com- parisons are made with the distorted wave (DW) results of Zeng et al. for both collision strengths and effective collision strengths. For the collision strengths, the two sets of calculations are in excellent agreement for most of the transitions. However, because of the inclusion of the resonances, our effective collision strengths are generally several times larger than those of Zeng et al.. The accuracy of our calculations is assessed.展开更多
To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Ngoura area (Tindikala-Boutou villages) hav...To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Ngoura area (Tindikala-Boutou villages) have been made through electrical sounding and profiling following Schlumberger array. The instrument is the resistivimeter Syscal Junior 48 (IRIS Instrument) which uses the electrical current. The data have been processed and modelled with Res2Dinv and Winsev softwares then interpolated with Surfer software. Electrical methods used are the Direct current (DC) and the Induced Polarization (IP). Interpretation and analyses of results from each investigation method highlight weak zones or conductive discontinuities and mineralized zones. Conductive zones have been identified as shear zones within granitic structures of the Precambrian basement, according to the geologic and tectonic background of the area. The structural trend of these shear zones is E-W. The mineralization within it is N-S and characterized by high values of chargeability, essentially in the eastern part of the area under study. This mineralization proves the presence of metalliferous or sulphide heaps disseminated in weathered quartz veins which cross shear zones. Also, the poor mineralization and conductive structures in shear zones characterize the groundwater zones. The intense activities of gold washers encountered in the area enable to link that mineralization to gold within quartz veins. The near surface gold mineralization is eluvial or alluvial, and in depth this mineralization is primary.展开更多
In this study,methods based on the distribution model(with and without personal opinion)were used for the separation of anomalous zones,which include two different methods of U-spatial statistics and mean plus values ...In this study,methods based on the distribution model(with and without personal opinion)were used for the separation of anomalous zones,which include two different methods of U-spatial statistics and mean plus values of standard deviation(X+nS).The primary purpose is to compare the results of these methods with each other.To increase the accuracy of comparison,regional geochemical data were used where occurrences and mineralization zones of epithermal gold have been introduced.The study area is part of the Hashtjin geological map,which is structurally part of the folded and thrust belt and part of the Alborz Tertiary magmatic complex.Samples were taken from secondary lithogeochemical environments.Au element data concerning epithermal gold reserves were used to investigate the efficacy of these two methods.In the U-spatial statistics method,and criteria were used to determine the threshold,and in the method,the element enrichment index of the region rock units was obtained with grouping these units.The anomalous areas were identified by,and criteria.Comparison of methods was made considering the position of discovered occurrences and the occurrences obtained from these methods,the flexibility of the methods in separating the anomalous zones,and the two-dimensional spatial correlation of the three elements As,Pb,and Ag with Au element.The ability of two methods to identify potential areas is acceptable.Among these methods,it seems the method with criteria has a high degree of flexibility in separating anomalous regions in the case of epithermal type gold deposits.展开更多
This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with ...This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.展开更多
Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron mic...Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.展开更多
Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have ...Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.展开更多
Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducin...Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuC14,' respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.展开更多
The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ...The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.展开更多
The choice of the UHV lines depends on surface electric field of the bundle conductors.Based on existing calculation methods,the optimized charge simulation method is used to calculate the conductors' surface elec...The choice of the UHV lines depends on surface electric field of the bundle conductors.Based on existing calculation methods,the optimized charge simulation method is used to calculate the conductors' surface electrical field of±800 kV UHVDC transmission lines in this paper.During calculation,the offset distance is set as the variance of the objective function,the position and the quantity of the simulation charges are optimized with the gold section method,and the surface electrical field is calculated when the charge is in the optimal position.The result shows that the distribution of the surface electrical field and its maximal value can be calculated accurately with this method,although less number of simulation charges is used in this proposed method and the calculation is simple.展开更多
Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method...Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.展开更多
Introduction Thin-layer spectroelectrochemical method has many unique advantages, therefore this method has been widely applied and developed. Recently light transparent thinlayer spectroelectrochemical cells with var...Introduction Thin-layer spectroelectrochemical method has many unique advantages, therefore this method has been widely applied and developed. Recently light transparent thinlayer spectroelectrochemical cells with various types of structures have been reported at home and abroad with gold or platinum minigrids as the working electrode in most of展开更多
Conventional geochemical exploration for gold deposits has not always been very satisfactory, especially for buried and blind ones. New considerations and methodology in sampling, analysis and interpretation have been...Conventional geochemical exploration for gold deposits has not always been very satisfactory, especially for buried and blind ones. New considerations and methodology in sampling, analysis and interpretation have been developed in China during the past decade. Important considerations for unconventional gold exploration in this paper are that (1) gold is active in surface environments; (2) gold occurs not only as discrete grains, but also as ultrafine particles (submicron?to nanometer-sized particles of gold) and other complex forms; (3) regional low anomalies and superimposed anomalies over buried gold deposits are produced by ultrafine gold grains and other complex forms of gold. The methodology based on these considerations has been developed both in regional and in local geochemical exploration for gold. Examples of the preliminary application of these methods in two areas covered by transported overburden are given.展开更多
We report the synthesis of gold nanorods (NRs) by seed-mediated growth method. A small amount of different shapes such as triangles, hexagons and a large amount of rods are obtained by varying the proportion of seed...We report the synthesis of gold nanorods (NRs) by seed-mediated growth method. A small amount of different shapes such as triangles, hexagons and a large amount of rods are obtained by varying the proportion of seed to metal salt, adding NaOH to growth solution as well as using the seed solution of CTAB-capped agent. The gold nanorod (NR) formation yield is improved. Meanwhile, the growth mechanism of high yield gold NRs is discussed. The high quality single size NRs can be separated from polydisperse samples using surfactant-assisted nanorod self-assembly. The gold NRs synthesized were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy.展开更多
Objective: To analyze the dynamic evaluation of chemiluminescence, colloidal gold, and immunofluorescence chromatography in detecting antibodies in COVID-19 patients within four weeks of infection, and to provide evid...Objective: To analyze the dynamic evaluation of chemiluminescence, colloidal gold, and immunofluorescence chromatography in detecting antibodies in COVID-19 patients within four weeks of infection, and to provide evidence for clinical application. Method: 74 patients with confirmed SARS-COV-2 infection in the local area were selected as the experimental group, while 231 patients with negative SARS-COV-2 results but not vaccinated with Covid19 vaccine were selected as the control group;during the first, second, third, and fourth weeks after enrollment in the experimental group, three methods were used to detect SARS-COV-2 IgG and IgM in patients’ blood: chemiluminescence method, colloidal gold antibody method, and immuno-fluorescence chromatography. In the control group, three methods were used to detect SARS-COV-2 IgG and IgM during physical examination for SARS-COV-2 nucleic acids. The ROC curve was drawn to analyze the value of each indicator in predicting SARS-COV-2 infection, and the kappa method was used to analyze the consistency of the detection results of each indicator. Results: There was no significant difference in the positive rates of SARS-COV-2 IgM and IgG antibodies detected by chemiluminescence, colloidal gold, and immunofluorescence chromatography during the four-week period (P > 0.05). The positive rates of SARS-COV-2 IgM and IgG antibodies detected by the three methods during the first week of infection were not higher than 60%;when the three methods were used to detect SARS-COV-2 IgM and IgG in vivo, the AUC diagnosed by the test results was less than 0.80 at the first week, the diagnostic efficacy of the three methods was above 0.95 from the second week to the fourth week, and the diagnostic efficacy of the three methods was higher than 0.97 at the fourth week. The diagnostic efficacy of the three methods was comparable;the three methods for detecting SARS-COV-2 IgM and IgG antibodies showed high consistency in four cycles. Conclusion: Chemiluminescence, colloidal gold, and immunofluorescence chromatography are highly consistent in the detection of SARS-COV-2 IgM and IgG antibodies, and can be used as an auxiliary diagnosis and efficacy observation of novel coronavirus infections according to the needs, but the positive rate of infected people in the first week is low.展开更多
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
文摘The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.
文摘Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points.
文摘In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174213 and 11304266)
文摘We calculate the electron impact excitation of Ni-like gold by using the Dirac R-matrix theory, and the cor- responding collision strengths and effective collision strengths are obtained. In the calculations of the level energy, (1sZ2sZ2p6)3sZ3p63d10, 3s23p63d94/, 3s23p53d104/, and 3s3p63d104/(l = 0, 1,2,3) configurations are included and 107 fine-structure levels are generated. In the calculations of the collision strengths, only the first 59 levels are included. Com- parisons are made with the distorted wave (DW) results of Zeng et al. for both collision strengths and effective collision strengths. For the collision strengths, the two sets of calculations are in excellent agreement for most of the transitions. However, because of the inclusion of the resonances, our effective collision strengths are generally several times larger than those of Zeng et al.. The accuracy of our calculations is assessed.
文摘To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Ngoura area (Tindikala-Boutou villages) have been made through electrical sounding and profiling following Schlumberger array. The instrument is the resistivimeter Syscal Junior 48 (IRIS Instrument) which uses the electrical current. The data have been processed and modelled with Res2Dinv and Winsev softwares then interpolated with Surfer software. Electrical methods used are the Direct current (DC) and the Induced Polarization (IP). Interpretation and analyses of results from each investigation method highlight weak zones or conductive discontinuities and mineralized zones. Conductive zones have been identified as shear zones within granitic structures of the Precambrian basement, according to the geologic and tectonic background of the area. The structural trend of these shear zones is E-W. The mineralization within it is N-S and characterized by high values of chargeability, essentially in the eastern part of the area under study. This mineralization proves the presence of metalliferous or sulphide heaps disseminated in weathered quartz veins which cross shear zones. Also, the poor mineralization and conductive structures in shear zones characterize the groundwater zones. The intense activities of gold washers encountered in the area enable to link that mineralization to gold within quartz veins. The near surface gold mineralization is eluvial or alluvial, and in depth this mineralization is primary.
文摘In this study,methods based on the distribution model(with and without personal opinion)were used for the separation of anomalous zones,which include two different methods of U-spatial statistics and mean plus values of standard deviation(X+nS).The primary purpose is to compare the results of these methods with each other.To increase the accuracy of comparison,regional geochemical data were used where occurrences and mineralization zones of epithermal gold have been introduced.The study area is part of the Hashtjin geological map,which is structurally part of the folded and thrust belt and part of the Alborz Tertiary magmatic complex.Samples were taken from secondary lithogeochemical environments.Au element data concerning epithermal gold reserves were used to investigate the efficacy of these two methods.In the U-spatial statistics method,and criteria were used to determine the threshold,and in the method,the element enrichment index of the region rock units was obtained with grouping these units.The anomalous areas were identified by,and criteria.Comparison of methods was made considering the position of discovered occurrences and the occurrences obtained from these methods,the flexibility of the methods in separating the anomalous zones,and the two-dimensional spatial correlation of the three elements As,Pb,and Ag with Au element.The ability of two methods to identify potential areas is acceptable.Among these methods,it seems the method with criteria has a high degree of flexibility in separating anomalous regions in the case of epithermal type gold deposits.
基金Merit-funded Science and Technology Project for Returned Oversea Scholars from Ministry of Human and Social Security of Shanxi provinceNatural Science Foundation for Young Scientists of Shanxi province(No.2011011020-2)Shanxi Province Foundation for Returness(No.2008062)
文摘This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.
基金The Natural Science Foundation of China (No.20273057,20473070).
文摘Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.
文摘Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.
基金supported by the National Natural Science Foundation of China(No.21073111)the Natural Science Foundation of Shandong Province,China(No.ZR2010BQ029)
文摘Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuC14,' respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.
文摘The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.
基金Project Supported by National Natural Science Foundation of China(90510015).
文摘The choice of the UHV lines depends on surface electric field of the bundle conductors.Based on existing calculation methods,the optimized charge simulation method is used to calculate the conductors' surface electrical field of±800 kV UHVDC transmission lines in this paper.During calculation,the offset distance is set as the variance of the objective function,the position and the quantity of the simulation charges are optimized with the gold section method,and the surface electrical field is calculated when the charge is in the optimal position.The result shows that the distribution of the surface electrical field and its maximal value can be calculated accurately with this method,although less number of simulation charges is used in this proposed method and the calculation is simple.
基金This work was supported by the Natural Science Foundation of Hubei Province(Project No.2000J002)
文摘Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.
基金Supported by the National Natural Science Foundation of China
文摘Introduction Thin-layer spectroelectrochemical method has many unique advantages, therefore this method has been widely applied and developed. Recently light transparent thinlayer spectroelectrochemical cells with various types of structures have been reported at home and abroad with gold or platinum minigrids as the working electrode in most of
基金This research represents a portion of the State Eighth Five-Year Plan Key ScienceTechnology Project "Unconventional Geochemical Exploration for Gold" supported by the State Science and Technology Commission of Chinathe National Gold Bureau of China
文摘Conventional geochemical exploration for gold deposits has not always been very satisfactory, especially for buried and blind ones. New considerations and methodology in sampling, analysis and interpretation have been developed in China during the past decade. Important considerations for unconventional gold exploration in this paper are that (1) gold is active in surface environments; (2) gold occurs not only as discrete grains, but also as ultrafine particles (submicron?to nanometer-sized particles of gold) and other complex forms; (3) regional low anomalies and superimposed anomalies over buried gold deposits are produced by ultrafine gold grains and other complex forms of gold. The methodology based on these considerations has been developed both in regional and in local geochemical exploration for gold. Examples of the preliminary application of these methods in two areas covered by transported overburden are given.
基金Funded by the Swiss National Science Foundation (No.pp002-68678)the China Scholarship Council Program (No.2006180267)
文摘We report the synthesis of gold nanorods (NRs) by seed-mediated growth method. A small amount of different shapes such as triangles, hexagons and a large amount of rods are obtained by varying the proportion of seed to metal salt, adding NaOH to growth solution as well as using the seed solution of CTAB-capped agent. The gold nanorod (NR) formation yield is improved. Meanwhile, the growth mechanism of high yield gold NRs is discussed. The high quality single size NRs can be separated from polydisperse samples using surfactant-assisted nanorod self-assembly. The gold NRs synthesized were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy.
文摘Objective: To analyze the dynamic evaluation of chemiluminescence, colloidal gold, and immunofluorescence chromatography in detecting antibodies in COVID-19 patients within four weeks of infection, and to provide evidence for clinical application. Method: 74 patients with confirmed SARS-COV-2 infection in the local area were selected as the experimental group, while 231 patients with negative SARS-COV-2 results but not vaccinated with Covid19 vaccine were selected as the control group;during the first, second, third, and fourth weeks after enrollment in the experimental group, three methods were used to detect SARS-COV-2 IgG and IgM in patients’ blood: chemiluminescence method, colloidal gold antibody method, and immuno-fluorescence chromatography. In the control group, three methods were used to detect SARS-COV-2 IgG and IgM during physical examination for SARS-COV-2 nucleic acids. The ROC curve was drawn to analyze the value of each indicator in predicting SARS-COV-2 infection, and the kappa method was used to analyze the consistency of the detection results of each indicator. Results: There was no significant difference in the positive rates of SARS-COV-2 IgM and IgG antibodies detected by chemiluminescence, colloidal gold, and immunofluorescence chromatography during the four-week period (P > 0.05). The positive rates of SARS-COV-2 IgM and IgG antibodies detected by the three methods during the first week of infection were not higher than 60%;when the three methods were used to detect SARS-COV-2 IgM and IgG in vivo, the AUC diagnosed by the test results was less than 0.80 at the first week, the diagnostic efficacy of the three methods was above 0.95 from the second week to the fourth week, and the diagnostic efficacy of the three methods was higher than 0.97 at the fourth week. The diagnostic efficacy of the three methods was comparable;the three methods for detecting SARS-COV-2 IgM and IgG antibodies showed high consistency in four cycles. Conclusion: Chemiluminescence, colloidal gold, and immunofluorescence chromatography are highly consistent in the detection of SARS-COV-2 IgM and IgG antibodies, and can be used as an auxiliary diagnosis and efficacy observation of novel coronavirus infections according to the needs, but the positive rate of infected people in the first week is low.