Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse...Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma.展开更多
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl...Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.展开更多
Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an imp...Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an important question that remains unanswered.This study reviews over 20 clinical trials focused on GNP safety and aims to summarize all the clinical studies,completed and ongoing,to identify whether GNPs are safe to use in humans as a therapeutic platform.In these studies,GNPs were implemented as drug delivery devices,for photothermal therapy,and utilized for their intrinsic therapeutic effects by various routes of delivery.These studies revealed no major safety concerns with the use of GNPs;however,the number of trials and total patient number remains limited.Multi-dose,multicenter blinded trials are required to deepen our understanding of the use of GNPs in clinical settings to facilitate translation of this novel,multifaceted therapeutic device.Expanding clinical trials will require collaboration between clinicians,scientists,and biotechnology companies.展开更多
The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via inco...The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via incorporation of single gold nanoparticles.The influences of resonant wavelength,quality factor and emission directions are successively investigated using a two-dimensional finite-difference time-domain method.It is found that blueshift of resonant wavelength could be achieved together with either promoted or degraded quality factor of the microlaser via single Au NPs with varied sizes.Unidirectional emission could also be realized which is favorable for on-chip integration.Our results provide useful reference for feasible manipulation of light-matter interactions and mode selection.展开更多
Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to m...Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.展开更多
Background: Use of novel microorganisms for beneficial purposes is still remaining a challenging job. This study was designed to isolate, characterize and use of a novel hot spring bacterial strain from a virgin hot s...Background: Use of novel microorganisms for beneficial purposes is still remaining a challenging job. This study was designed to isolate, characterize and use of a novel hot spring bacterial strain from a virgin hot spring of Metaldanga, Birbhum, West Bengal, India. Methods: A pure bacterial strain (MDH1) was identified by growing the enrichment culture isolated from Metaldanga hot spring through serial dilution process in a semi-synthetic medium at pH 8.0 and 42°C temperature. The novelty of the strain was characterized by 16S-rRNA gene sequence analysis. The bacterium acted as template to synthesize spherical gold nanoparticles (GNPs). GNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infra-red spectroscopy (FTIR). Results: The phylogenetic analysis suggested that MDH1 strain (GenBank accession number: KT600031) was affiliated to the family “Pseudomonadaceae” with 99% homologous to Pseudomonas putida H8234. The coccoid shaped bacterium was gram-negative and facultative-anaerobic which acted as a template to synthesize spherical GNPs with an average size of 12 ± 3 nm when examined under transmission electron microscopy (TEM). FT-IR studies revealed the presence of bioactive functional groups which acted as capping and stabilizing agents of the GNPs. XRD pattern confirmed the amorphous nature of GNPs. The Zeta potential (ζ) concluded the adequate stability of GNPs in an aqueous environment. Conclusions: The present investigation explores the microbial diversity of a virgin hot spring of Metaldanga for its beneficial applications in industry, particularly in the synthesis of the gold nanoparticles.展开更多
This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with ...This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.展开更多
It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization appli...It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.展开更多
An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic act...An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic activity for phenol degradation underλ>400 nm irradiation but negligible activity underλ>535 nm,indicating that the surface plasmon resonance(SPR) effect is too weak for organic photodegradation. According to the photoelectrochemical results of the porous powder electrodes of Bi VO_4 and Au/Bi VO_4, the SPR effect of Au NPs has been assessed. The role of Au NPs as electron sinks or sources, which is controllable by incident photon energy and applied potentials, has been discussed.展开更多
Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold sal...Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.展开更多
The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosy...The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosystem, liposomes naturally come under the spotlight of this trend. This review summarizes the latest development about the design and construction of photo-responsive liposomes with gold nanoparticles for the controlled drug release. Alongside, we overview the mechanism involved in this process and the representative applications.展开更多
Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto con...Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.展开更多
The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of ty...The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...展开更多
Liver cancer is the fifth most common cancer and one of the leading causes of death in the world, and second most common cause of death in men. Natural products emerge as the most enduring approaches in the developmen...Liver cancer is the fifth most common cancer and one of the leading causes of death in the world, and second most common cause of death in men. Natural products emerge as the most enduring approaches in the development of anticancer targeting drug. Hesperetin(HP), one of the abundant flavonoids found naturally in citrus fruits, has received considerable attention in anti-cancer promotion and progression. The present study was conducted to decipher the role of 0.5 ml hesperetin conjugated gold nanoparticles(Au-m PEG(5000)-S-HP NPs) during diethylnitrosamine(DEN)-induced hepatocarcinogenesis in male Wistar albino rats and shows the better antioxidant that possesses anti-inflammatory,anti-proliferation and anticarcinogenic properties and may modulate signaling pathways.The confirmation of polymer functionalized gold nanoparticles and drug loaded polymer gold nanoparticles were characterized by HR-TEM with EDAX, and DLS with Zeta potential techniques. The drug encapsulation efficiency and release properties were carried out in PBS at pH 7.4 for Au-mPEG(5000)-S-HP and compared with the control pure hesperetin(HP).Here, we review the role of mast cell counts, tumor necrosis factor alpha(TNF-α), transcription factor nuclear factor-κB(NF-κB), levels of glycoconjugates, proliferating cell nuclear antigen(PCNA) and argyrophilic nucleolar organizing regions, are the master regulator of inflammation and proliferation, in the development of hepatocellular injury, liver fibrosis and HCC. DEN-administered animals showed increased mast cell counts, tumor necrosis factor alpha, transcription factor nuclear factor-κB, glycoconjugates, proliferating cell nuclear antigen, and argyrophilic nucleolar organizing regions. Whereas Au-mPEG(5000)-S-HP NPs supplementation considerably suppressed all the above abnormalities. These results suggest that the Au-m PEG(5000)-S-HP NPs exhibited the better potential anticancer activity by inhibiting cell inflammation and proliferation in DEN-induced hepatocellular carcinogenesis.展开更多
Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an...Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.展开更多
Objective In this study, the ameliorative effects of gold nanoparticles (gold NP) on the renal tissue damage in Schistosoma mansoni (S. mansoni)-infected mice was investigated. Methods High-resolution transmission...Objective In this study, the ameliorative effects of gold nanoparticles (gold NP) on the renal tissue damage in Schistosoma mansoni (S. mansoni)-infected mice was investigated. Methods High-resolution transmission electron microscopy was used for the characterization of NP. The gold NP at concentrations of 250, 500, and 1000 μg/kg body weight were inoculated into 5. mansoni-infected mice. Results The parasite caused alterations in the histological architecture. Furthermore, it induced a significant reduction in the renal glutathione levels; however, the levels of nitric oxide and malondialdehyde were significantly elevated. The parasite also managed to downregulate KIM-I, NGAL, MCP-1, and TGF-8 mRNA expression in infected animals. Notably, gold NP treatment in mice reduced the extent of histological impairment and renal oxidative damage. Gold NP were able to regulate gene expression impaired by 5. Mansoni infection. Conclusion The curative effect of gold NP against renal toxicity in 5. mansoni-infected mice is associated with their role as free radical scavengers.展开更多
Through the reduction of [AuCl4] by aqueous sodium borohydride in the presence of 9-(5-thiopentyl)-carbazole, the gold nanoparticles has been prepared and characterized.
Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic f...Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic force microscopy(AFM).展开更多
A simple method to prepare the non-spherical gold particles was developed. The result solution included trigonal, truncated trigonal, hexagonal layers, and a pseudo-pentagonal shaped gold nanocrystals. The key facto...A simple method to prepare the non-spherical gold particles was developed. The result solution included trigonal, truncated trigonal, hexagonal layers, and a pseudo-pentagonal shaped gold nanocrystals. The key factor is to control the relative rates of nucleation and cluster growth in this method. These attributes make seeding growth method as a useful tool in the fabrication of colloidal metal materials. A longitudinal plasmon resonance of 866 nm was observed, which is in the near-IR spectral regions (600-1000 nm). The excellent optical properties as near-IR labels are used to develop highly sensitive analysis method.展开更多
AIM: To investigate the effect of gold nanoparticles on retinal angiogenesis in vitro and in vivo, and to reveal the possible mechanism.METHODS: Seed growth method was used to synthesize gold nanoparticles(GNPs). ...AIM: To investigate the effect of gold nanoparticles on retinal angiogenesis in vitro and in vivo, and to reveal the possible mechanism.METHODS: Seed growth method was used to synthesize gold nanoparticles(GNPs). The size, zeta potential, absorption spectrum and morphology of GNPs were identified using Malvern Nano-ZS, multimode reader(Bio Tek synergy2) and transmission electron microscope. Cell viability was analyzed using cell counting kit-8 method and cell growth was assessed with EdU kit. Transwell chamber was used to investigate cell migration. Tube formation method was used to assess the angiogenic property in vitro. Oxygen induced retinopathy(OIR) model was used to investigate the effect of GNPs on retinal angiogenesis. Confocal microscope and Western blot were used to study the possible mechanism of GNPs inhibited angiogenesis.RESULTS: The GNPs synthesized were uniform and well dispersed. GNPs of 10 μg/mL and 20 μg/mL were able to inhibit human umbilical vein endothelial cells proliferation(50% and 72% separately, P〈0.001), migration(54% and 83% separately, P〈0.001) and tube formation(52% and 90% separately, P〈0.001). Further data showed that GNPs were able to improve the retinopathy in an OIR model. The possible mechanism might be that GNPs were able to induce autophagy significantly(P〈0.05).CONCLUSION: The present study suggests that GNPs are able to inhibit retinal neovascularization in vitro and in vivo. GNPs might be a potential nanomedicine for the treatment of retinal angiogenesis.展开更多
基金the Brazilian agencies FAPESP(Nos.2018/10172-7 and 2019/18828-1)CAPES(Finance Code 001),CNPq(No.303580/2021-6)+2 种基金the National Institute of Photonics—INFO(INCTs program)the Universidade de Sao Paulo(USP)Ministère de L’Enseignement Supérieur de la Recherche et de l’Innovation(France)for financial support。
文摘Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma.
基金the National Natural Science Foundation of China(Grant 22022403 and 22274058)Fundamental Research Funds for the Central Universities.
文摘Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.
基金supported by grants from Canadian Institutes of Health Research(Grant Nos.:MOP-42546,MOP-119514,PJT148847).
文摘Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an important question that remains unanswered.This study reviews over 20 clinical trials focused on GNP safety and aims to summarize all the clinical studies,completed and ongoing,to identify whether GNPs are safe to use in humans as a therapeutic platform.In these studies,GNPs were implemented as drug delivery devices,for photothermal therapy,and utilized for their intrinsic therapeutic effects by various routes of delivery.These studies revealed no major safety concerns with the use of GNPs;however,the number of trials and total patient number remains limited.Multi-dose,multicenter blinded trials are required to deepen our understanding of the use of GNPs in clinical settings to facilitate translation of this novel,multifaceted therapeutic device.Expanding clinical trials will require collaboration between clinicians,scientists,and biotechnology companies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174116 and 91850107)the National Key Research and Development Program of China(Grant No.2018YFA0306200)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)Science and Technology Project of Guangdong(Grant No.2020B010190001)。
文摘The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via incorporation of single gold nanoparticles.The influences of resonant wavelength,quality factor and emission directions are successively investigated using a two-dimensional finite-difference time-domain method.It is found that blueshift of resonant wavelength could be achieved together with either promoted or degraded quality factor of the microlaser via single Au NPs with varied sizes.Unidirectional emission could also be realized which is favorable for on-chip integration.Our results provide useful reference for feasible manipulation of light-matter interactions and mode selection.
文摘Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.
文摘Background: Use of novel microorganisms for beneficial purposes is still remaining a challenging job. This study was designed to isolate, characterize and use of a novel hot spring bacterial strain from a virgin hot spring of Metaldanga, Birbhum, West Bengal, India. Methods: A pure bacterial strain (MDH1) was identified by growing the enrichment culture isolated from Metaldanga hot spring through serial dilution process in a semi-synthetic medium at pH 8.0 and 42°C temperature. The novelty of the strain was characterized by 16S-rRNA gene sequence analysis. The bacterium acted as template to synthesize spherical gold nanoparticles (GNPs). GNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infra-red spectroscopy (FTIR). Results: The phylogenetic analysis suggested that MDH1 strain (GenBank accession number: KT600031) was affiliated to the family “Pseudomonadaceae” with 99% homologous to Pseudomonas putida H8234. The coccoid shaped bacterium was gram-negative and facultative-anaerobic which acted as a template to synthesize spherical GNPs with an average size of 12 ± 3 nm when examined under transmission electron microscopy (TEM). FT-IR studies revealed the presence of bioactive functional groups which acted as capping and stabilizing agents of the GNPs. XRD pattern confirmed the amorphous nature of GNPs. The Zeta potential (ζ) concluded the adequate stability of GNPs in an aqueous environment. Conclusions: The present investigation explores the microbial diversity of a virgin hot spring of Metaldanga for its beneficial applications in industry, particularly in the synthesis of the gold nanoparticles.
基金Merit-funded Science and Technology Project for Returned Oversea Scholars from Ministry of Human and Social Security of Shanxi provinceNatural Science Foundation for Young Scientists of Shanxi province(No.2011011020-2)Shanxi Province Foundation for Returness(No.2008062)
文摘This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.
基金supported by the National Natural Science Foundation of China (21103165)
文摘It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.
基金financially supported by National Natural Science Foundation of China(No.20907031)the SSRF pro ject(No.10sr0175)Natural Science Foundation of Shanghai(No.09ZR1414800)
文摘An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic activity for phenol degradation underλ>400 nm irradiation but negligible activity underλ>535 nm,indicating that the surface plasmon resonance(SPR) effect is too weak for organic photodegradation. According to the photoelectrochemical results of the porous powder electrodes of Bi VO_4 and Au/Bi VO_4, the SPR effect of Au NPs has been assessed. The role of Au NPs as electron sinks or sources, which is controllable by incident photon energy and applied potentials, has been discussed.
基金supported by the Project from Institute of Chemical and Engineering Sciences (ICES), Singapore (ICES/15-1G4B01)~~
文摘Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.
文摘The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosystem, liposomes naturally come under the spotlight of this trend. This review summarizes the latest development about the design and construction of photo-responsive liposomes with gold nanoparticles for the controlled drug release. Alongside, we overview the mechanism involved in this process and the representative applications.
基金financial support from the National Key R&D Program of China (Grant 2017YFA0700102)the National Natural Science Foundation of China (Grants 21573222 and 91545202)+4 种基金Dalian National Laboratory for Clean Energy (DNL180404)Dalian Institute of Chemical Physics (Grant DICP DMTO201702)Dalian Outstanding Young Scientist Foundation (Grant 2017RJ03)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDB17020200)the financial support from CAS Youth Innovation Promotion (Grant no. 2015145)
文摘Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.
基金supported by the National Natural Science Foundation of China(No.20875059)
文摘The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...
基金Indian Council of Medical Research, New Delhi, India, for the financial support provided in the form of Senior Research Fellowship (SRF-3/2/2/156/2011/NCD-Ⅲ)
文摘Liver cancer is the fifth most common cancer and one of the leading causes of death in the world, and second most common cause of death in men. Natural products emerge as the most enduring approaches in the development of anticancer targeting drug. Hesperetin(HP), one of the abundant flavonoids found naturally in citrus fruits, has received considerable attention in anti-cancer promotion and progression. The present study was conducted to decipher the role of 0.5 ml hesperetin conjugated gold nanoparticles(Au-m PEG(5000)-S-HP NPs) during diethylnitrosamine(DEN)-induced hepatocarcinogenesis in male Wistar albino rats and shows the better antioxidant that possesses anti-inflammatory,anti-proliferation and anticarcinogenic properties and may modulate signaling pathways.The confirmation of polymer functionalized gold nanoparticles and drug loaded polymer gold nanoparticles were characterized by HR-TEM with EDAX, and DLS with Zeta potential techniques. The drug encapsulation efficiency and release properties were carried out in PBS at pH 7.4 for Au-mPEG(5000)-S-HP and compared with the control pure hesperetin(HP).Here, we review the role of mast cell counts, tumor necrosis factor alpha(TNF-α), transcription factor nuclear factor-κB(NF-κB), levels of glycoconjugates, proliferating cell nuclear antigen(PCNA) and argyrophilic nucleolar organizing regions, are the master regulator of inflammation and proliferation, in the development of hepatocellular injury, liver fibrosis and HCC. DEN-administered animals showed increased mast cell counts, tumor necrosis factor alpha, transcription factor nuclear factor-κB, glycoconjugates, proliferating cell nuclear antigen, and argyrophilic nucleolar organizing regions. Whereas Au-mPEG(5000)-S-HP NPs supplementation considerably suppressed all the above abnormalities. These results suggest that the Au-m PEG(5000)-S-HP NPs exhibited the better potential anticancer activity by inhibiting cell inflammation and proliferation in DEN-induced hepatocellular carcinogenesis.
文摘Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.
基金the Deanship of Scientific Research at King Saud University for funding the study through the research group project No.RG-198
文摘Objective In this study, the ameliorative effects of gold nanoparticles (gold NP) on the renal tissue damage in Schistosoma mansoni (S. mansoni)-infected mice was investigated. Methods High-resolution transmission electron microscopy was used for the characterization of NP. The gold NP at concentrations of 250, 500, and 1000 μg/kg body weight were inoculated into 5. mansoni-infected mice. Results The parasite caused alterations in the histological architecture. Furthermore, it induced a significant reduction in the renal glutathione levels; however, the levels of nitric oxide and malondialdehyde were significantly elevated. The parasite also managed to downregulate KIM-I, NGAL, MCP-1, and TGF-8 mRNA expression in infected animals. Notably, gold NP treatment in mice reduced the extent of histological impairment and renal oxidative damage. Gold NP were able to regulate gene expression impaired by 5. Mansoni infection. Conclusion The curative effect of gold NP against renal toxicity in 5. mansoni-infected mice is associated with their role as free radical scavengers.
基金the Major State Basic Research Development Program the National Natural Science Foundation of China (29631030).
文摘Through the reduction of [AuCl4] by aqueous sodium borohydride in the presence of 9-(5-thiopentyl)-carbazole, the gold nanoparticles has been prepared and characterized.
基金This work was supported by the National Natural Science Foundation of China(No.29975028).
文摘Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic force microscopy(AFM).
文摘A simple method to prepare the non-spherical gold particles was developed. The result solution included trigonal, truncated trigonal, hexagonal layers, and a pseudo-pentagonal shaped gold nanocrystals. The key factor is to control the relative rates of nucleation and cluster growth in this method. These attributes make seeding growth method as a useful tool in the fabrication of colloidal metal materials. A longitudinal plasmon resonance of 866 nm was observed, which is in the near-IR spectral regions (600-1000 nm). The excellent optical properties as near-IR labels are used to develop highly sensitive analysis method.
基金Supported by the National Natural Science Foundation of China (No.81401063)Shanghai Municipal Planning Commission of Science and Research Fund (No.201740054)+5 种基金Natural Science Foundation of Beijing (No.7153175)the Capital Health Research and Development of Special (No.2018-4-5111)Beijing Nova Program (No. Z16111000490000)Research Foundation for Youth of Second Military Medical University (No.2017QN13)Research Foundation for Youth of Changhai Hospital (No.CH201712 No.CH201820)
文摘AIM: To investigate the effect of gold nanoparticles on retinal angiogenesis in vitro and in vivo, and to reveal the possible mechanism.METHODS: Seed growth method was used to synthesize gold nanoparticles(GNPs). The size, zeta potential, absorption spectrum and morphology of GNPs were identified using Malvern Nano-ZS, multimode reader(Bio Tek synergy2) and transmission electron microscope. Cell viability was analyzed using cell counting kit-8 method and cell growth was assessed with EdU kit. Transwell chamber was used to investigate cell migration. Tube formation method was used to assess the angiogenic property in vitro. Oxygen induced retinopathy(OIR) model was used to investigate the effect of GNPs on retinal angiogenesis. Confocal microscope and Western blot were used to study the possible mechanism of GNPs inhibited angiogenesis.RESULTS: The GNPs synthesized were uniform and well dispersed. GNPs of 10 μg/mL and 20 μg/mL were able to inhibit human umbilical vein endothelial cells proliferation(50% and 72% separately, P〈0.001), migration(54% and 83% separately, P〈0.001) and tube formation(52% and 90% separately, P〈0.001). Further data showed that GNPs were able to improve the retinopathy in an OIR model. The possible mechanism might be that GNPs were able to induce autophagy significantly(P〈0.05).CONCLUSION: The present study suggests that GNPs are able to inhibit retinal neovascularization in vitro and in vivo. GNPs might be a potential nanomedicine for the treatment of retinal angiogenesis.