Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H\-2O, H\-2O-CO\-2 and CO\-2 inclusions. H\-2O inclusions are the most abundant, they include two phases which exhibit low and h...Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H\-2O, H\-2O-CO\-2 and CO\-2 inclusions. H\-2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to 200℃ and 175 to 250℃, respectively. The salinity of aqueous inclusions, based on ice melting, varies between \{6.1\} and 8 equiv. wt% NaCl. On the other hand, H\-2O-CO\-2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325℃, and their salinity, based on clathrate melting, ranges between \{0.8\} and \{3.8\} equiv. wt% NaCl. CO\-2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from \{0.52\} to \{0.66\} g/cm\+3. The partial mixing of H\-2O-CO\-2 and salt H\-2O-NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.展开更多
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins exp...Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.展开更多
The auriferous veins at Jinniushan occurs within the Jinniushan faulted zone in the Kunyushan Granite. Optical observation reveals that gold ore body formed during the main stage of hydrothermal activity. Detailed geo...The auriferous veins at Jinniushan occurs within the Jinniushan faulted zone in the Kunyushan Granite. Optical observation reveals that gold ore body formed during the main stage of hydrothermal activity. Detailed geothermometric studies of fluid inclusions from the veins show that the forming temperature ranges between 130℃ and 370℃ and the salinity is from 4.01 to 15.21 wvt percent NaCl. The ore-forming fluid is featured by low to moderate salinity, and low to moderate temperature. According to investigations of the values of vapor/liquid and temperatures of the ore-forming fluids, we propose that the boiling fluid inclusions exist in the main mineralization stages. Fluid boiling is suggested as a mechanism for the precipitation of gold from the hydrothermal fluid in the Jinniushan gold deposit.展开更多
Fluid inclusion research in Archean metamorphic rocks, Yanshanian granite and gold-bearing quartz veins shows that regional metamorphic fluids are high temperature and high saline, Yanshanian post-granitic fluids are ...Fluid inclusion research in Archean metamorphic rocks, Yanshanian granite and gold-bearing quartz veins shows that regional metamorphic fluids are high temperature and high saline, Yanshanian post-granitic fluids are CO2-bearing low saline, and ore-forming fluids are also CO2-rich low saline. In gold-barren/free parts of quartz veins in gold deposits, daughter mineral-bearing high saline inclusions related with metamorphic fluids remained. This proclaims quartz veins hosting gold ores might have been formed in early metamorphism, and overlapped or mineralized by late Yanshanian gold-bearing fluids.展开更多
A hydrometallurgical process for refractory gold-bearing arsenosulfide concentrates at ambient temperature and pressure was presented, including fine grinding with intensified alkali-leaching (FGIAL), enhanced agita...A hydrometallurgical process for refractory gold-bearing arsenosulfide concentrates at ambient temperature and pressure was presented, including fine grinding with intensified alkali-leaching (FGIAL), enhanced agitation alkali-leaching (EAAL), thiosulfate leaching and displacement. Experimental results on a refractory gold concentrate showed that the total consumption of NaOH in alkaline leaching is only 41% of those theoretically calculated under the conditions of full oxidization for the same amount of arse- nides and sulfides transformed into arsenates and sulfates, and 72.3% of gold is synchro-dissoluted by thiosulfate self-generated during alkaline leaching. After alkaline leaching, thiosulfate leaching was carried out for 24 h. The dissolution of gold is increased to 91.9% from 4.6% by cyanide without the pretreatment. The displacement of gold by zinc powder in the solution gets to 99.2%. Due to an amount of thiosulfate self-generated during alkaline leaching, the reagent addition in thiosulfate leaching afterwards is lower than the normal.展开更多
Ultrafine Milling technology is used to treat gold-bearingsulphides and to investigate the effects of minerals size, millingtime, liquid/solid ratio, NaCN consumption and leaching aid onleaching rate of gold. The resu...Ultrafine Milling technology is used to treat gold-bearingsulphides and to investigate the effects of minerals size, millingtime, liquid/solid ratio, NaCN consumption and leaching aid onleaching rate of gold. The results indicate that shorter treatingtime, decrease of NaCN consumption of 60/100 and increase of goldleaching rate of 15/100 can be ob- tained by the ultrafine millingtechnology compared with traditional cyanide leaching. Potentialexists for the new pro- cess to form the basis for an economicallyprocess for treatment of gold-bearing sulphides.展开更多
The ore-bearing belts, specialized for precious metals, are substantia ted to exist in the south Far East of Russia. The longest of which is the Amursk y gold-bearing belt extended from the Amur River mouth to the Uss...The ore-bearing belts, specialized for precious metals, are substantia ted to exist in the south Far East of Russia. The longest of which is the Amursk y gold-bearing belt extended from the Amur River mouth to the Ussuri River lowe r course and further to the southwest on China territory, probably, to the Sungar i River head. The fact that we have distinguished the Amursky and other gold-be a ring belts, make it possible to reevaluate the perspectives of the South Far Eas t of Russia and North-East China for new deposits of precious metals.展开更多
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu...A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
The thiourea leaching of gold from the calcine of gold-bearing arsenical pyrite concentrate of Kangjiawan mine was studied.The effects of the leaching time,the concentrations of thiourea,hydrochloric acid and initial ...The thiourea leaching of gold from the calcine of gold-bearing arsenical pyrite concentrate of Kangjiawan mine was studied.The effects of the leaching time,the concentrations of thiourea,hydrochloric acid and initial ferric ion on the leaching recovery of gold were investigated,and a regressive model has been established,which showed that the concentrations of thiourea and hydrochloric acid were the most important factors,leaching time the second,and concentration of the initial ferric ion the least・Under the optimal conditions,that is,temperature 50℃,the ratio of liquid to solid 4:1,thiourea 12g/L,hydrochloric acid 1 mol/L,and initial ferric ion 1 g/L,the leaching recoveries of gold and silver were more than 81%and 73%,respectively.The increase of silver recovery and the reduction of thiourea consumption could be attained when sodium sulphite was added.展开更多
In central Inner Mongolia, five gold bearing formations (Xiajining, Dongwufenzi, Wulashan, Baiyunebo and Bainaimiao Groups) belong either to volcano sedimentation or clasolite sedimentation. They formed in different t...In central Inner Mongolia, five gold bearing formations (Xiajining, Dongwufenzi, Wulashan, Baiyunebo and Bainaimiao Groups) belong either to volcano sedimentation or clasolite sedimentation. They formed in different tectonic environments such as an Archean rift zone (Xiajining and Dongwufenzi Groups), an Early Proterozoic stable basin (Wulashan Group), a Middle to Late Proterozoic continental rift zone (Baiyunebo Group), and a Paleozoic island arc environment (Bainaimiao Group). Gold contents in the gold bearing formations in the area are higher than those of other gold bearing formations in the North China Craton. However, as most gold bearing formations in the area are limited, there are a few big gold deposits in central Inner Mongolia. Gold contents in all formations were strongly influenced by migmatization and ductile shearing, the former process prompting mobilization, and the latter process resulting in gold enrichment in ductile shear zones. During the development of Archean to Proterozoic gold bearing formations, gold migrated from the mantle to the crust, then through the crust, finally deposited at the earth’s surface.展开更多
Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency...Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.展开更多
1. Material composition of the geosynclinal tectonic LayerThe geosynclinal tectonic layer is mainly composed of the following two parts: sandyslate rocks of Precambrin and volcanic rocks inbeded within the sand-slate ...1. Material composition of the geosynclinal tectonic LayerThe geosynclinal tectonic layer is mainly composed of the following two parts: sandyslate rocks of Precambrin and volcanic rocks inbeded within the sand-slate rocks.The sandy-slate rocks embrace the chemical compositional characteristics of light metamorphic rocks: SiO<sub>2</sub>=54.56<sup>8</sup>1.63(Wt%), with average of 63.96(wt%)(n=58, the same as following); Al<sub>2</sub>O<sub>3</sub>=9.47<sup>1</sup>7.75(wt%), with average of 15.36(wt%), and Al<sub>2</sub>O<sub>3</sub>】K<sub>2</sub>O+Na<sub>2</sub>O+CaO; the content of (FeO+Fe<sub>2</sub>O<sub>3</sub>) varies greatly with FeO】Fe<sub>2</sub>O<sub>3</sub>; (CaO+MgO)=0.78<sup>9</sup>.22 (wt%)with average of 23 (wt%), and MgO】CaO; the ratios of K<sub>2</sub>O/Na<sub>2</sub>O rang from 2 to 4(】1). By comparing all this chemical data with that of the other kind rocks, We can know that the sand y-slate rocks were the eunic and /or bathyal sediments which formed under the strongly active eugeosynclinal tectonic setting.展开更多
The Songshugang deposit is a large Ta-Nb deposit in South China,with Ta-Nb mineralization associated genetically with the granite and pegmatite.A diversity of quartz from topaz-albite granite,quartz-mica pegmatite,qua...The Songshugang deposit is a large Ta-Nb deposit in South China,with Ta-Nb mineralization associated genetically with the granite and pegmatite.A diversity of quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite at Songshugang was studied by CL and LA-ICP-MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits.Cathodoluminescence image illuminates a canvas of complexity,the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,exhibits numerous dark CL streaks,patches,and a series of healed fractures.These textures suggest that the rocks were fractured because of deep crustal pressure,and underwent later hydrothermal metasomatism and quartz filling.The quartz from quartz-fluorite pegmatite present limited patches or fractures but distinct growth bands,indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less aff ected by mechanical fragmentation.The LA-ICP-MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,to quartz-fluorite pegmatite,indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li.However,our data deviate from the theoretical Li:Al mass ratio of~1:3.89 in quartz,indicating that there may be competition between H^(+)and Li in a water-rich magmatic environment.The quartz from topaz-albite granite is enriched in K and Na elements,and the quartz from quartz-fluorite pegmatite is enriched in fluorite with a low Ca content in quartz,further elucidating that these rocks were subjected to hydrothermal metasomatism.From topaz-albitite granite to quartz-fluorite pegmatite,Al,Li and Ge content and Al/Ti,Ge/Ti,Sb/Ti ratios in quartz gradually increased,but Ti content gradually decreased,reflecting the high evolution of magma,which can enrich rare metal elements.Based on the characteristics of quartz CL textures and trace elements in topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,combined with the albitization and K-feldspathization of rocks,it is suggested that the Nb-Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism.By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world,the Songshugang pegmatite share similarities with the LCT-type pegmatite.Combined with previous studies,the Ge/Ti>0.1 and Ti<10 ppm,as well as Al,Li,Ge,Sb,K,Na contents and Al/Ti,Sb/Ti ratios in quartz have the potential to be a powerful exploration marker for identifying granite-like pegmatitic Nb-Ta deposits in other places.展开更多
The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,and...The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.展开更多
Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi...Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.展开更多
The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by mea...The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by means of zeta potential measurement and infrared spectroscopic analysis. The single mineral experiments showed that andalusite got good floatability in acidic pH region while quartz exhibited very poor floatability in the whole pH range. At pH 3, the presence of Fe3+ obviously activated quartz, causing the identical flotation behavior of the two minerals, and calcium lignosulphonate exhibited good selective inhibition to quartz. The real ore test results showed that andalusite concentrate with 53.46% Al2O3 and quartz concentrate with 92.74% SiO2 were obtained. The zeta potential and infrared spectroscopic analysis results indicated that chemical adsorption occurred between sodium petroleum sulfonate and andalusite.展开更多
The volume defects in pure pyrite and quartz from a classical Cu-Pb-Zn-Fe sulfide deposit were investigated.The results indicate that a large number of volume defects exist in natural pyrite and quartz.The volume defe...The volume defects in pure pyrite and quartz from a classical Cu-Pb-Zn-Fe sulfide deposit were investigated.The results indicate that a large number of volume defects exist in natural pyrite and quartz.The volume defects assume a variety of shapes,including long strips,oval shapes and irregular shapes,with sizes ranging from a few microns to dozens of microns.These volume defects are rich in metallogenic elements as a result of the capture of metallogenic and mineralizing fluid during the defect-forming process.The volume defects are fractured during the grinding process,and their chemical components are released into the solution,as confirmed by the abundant presence of various metal and non-metal components in the cleaning water and EDS results.Under the experimental conditions of 10 g pyrite or quartz with grinding fineness of d90=37 μm,which was cleaned in 40 m L of pure deionised water under an inert atmosphere,the total average concentrations of Cu,Pb,Zn,Fe,Ca,Mg and Cl-in the aqueous solution are 32.09×10^-7,16.51×10^-7,19.45×10^-7,516.52×10^-7,129.50×10^-7,35.30×10^-7 and 433.80×10^-7 mol/L,respectively,for pyrite and 19.20×10^-7,8.88×10^-7,8.31×10^-7,82.71×10^-7,16.21×10^-7,4.28×10^-7 and 731.26×10^-7 mol/L,respectively,for quartz.These values are significantly greater than those from the experimental non-oxidative dissolution of the pyrite or quartz,respectively.Therefore,the metallogenic fluid in volume defects of mineral crystal is concluded to represent the dominant contribution to the solution chemistry of sulfide flotation pulp.The present investigation will help to deeply understand the flotation theory of sulfide minerals.展开更多
The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten ...The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed.展开更多
文摘Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H\-2O, H\-2O-CO\-2 and CO\-2 inclusions. H\-2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to 200℃ and 175 to 250℃, respectively. The salinity of aqueous inclusions, based on ice melting, varies between \{6.1\} and 8 equiv. wt% NaCl. On the other hand, H\-2O-CO\-2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325℃, and their salinity, based on clathrate melting, ranges between \{0.8\} and \{3.8\} equiv. wt% NaCl. CO\-2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from \{0.52\} to \{0.66\} g/cm\+3. The partial mixing of H\-2O-CO\-2 and salt H\-2O-NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.
基金supported jointly by the CNSF (No. 41173055)the National Basic Research Program of China (No.2003CB214605)
文摘Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.
基金中国科学院知识创新工程项目,National Science and Technology Project
文摘The auriferous veins at Jinniushan occurs within the Jinniushan faulted zone in the Kunyushan Granite. Optical observation reveals that gold ore body formed during the main stage of hydrothermal activity. Detailed geothermometric studies of fluid inclusions from the veins show that the forming temperature ranges between 130℃ and 370℃ and the salinity is from 4.01 to 15.21 wvt percent NaCl. The ore-forming fluid is featured by low to moderate salinity, and low to moderate temperature. According to investigations of the values of vapor/liquid and temperatures of the ore-forming fluids, we propose that the boiling fluid inclusions exist in the main mineralization stages. Fluid boiling is suggested as a mechanism for the precipitation of gold from the hydrothermal fluid in the Jinniushan gold deposit.
文摘Fluid inclusion research in Archean metamorphic rocks, Yanshanian granite and gold-bearing quartz veins shows that regional metamorphic fluids are high temperature and high saline, Yanshanian post-granitic fluids are CO2-bearing low saline, and ore-forming fluids are also CO2-rich low saline. In gold-barren/free parts of quartz veins in gold deposits, daughter mineral-bearing high saline inclusions related with metamorphic fluids remained. This proclaims quartz veins hosting gold ores might have been formed in early metamorphism, and overlapped or mineralized by late Yanshanian gold-bearing fluids.
基金This project was financially supported by the Natural Science Foundation of Liaoning Province of China (No.2001101015) and theFree Study Item of the Institute of Metal Research, Chinese Academy of Sciences (No.AM05-0866)
文摘A hydrometallurgical process for refractory gold-bearing arsenosulfide concentrates at ambient temperature and pressure was presented, including fine grinding with intensified alkali-leaching (FGIAL), enhanced agitation alkali-leaching (EAAL), thiosulfate leaching and displacement. Experimental results on a refractory gold concentrate showed that the total consumption of NaOH in alkaline leaching is only 41% of those theoretically calculated under the conditions of full oxidization for the same amount of arse- nides and sulfides transformed into arsenates and sulfates, and 72.3% of gold is synchro-dissoluted by thiosulfate self-generated during alkaline leaching. After alkaline leaching, thiosulfate leaching was carried out for 24 h. The dissolution of gold is increased to 91.9% from 4.6% by cyanide without the pretreatment. The displacement of gold by zinc powder in the solution gets to 99.2%. Due to an amount of thiosulfate self-generated during alkaline leaching, the reagent addition in thiosulfate leaching afterwards is lower than the normal.
基金This project is financially supported by the Excellent Doctoral Dissertation Foundation of Hunan Province(No.200114)
文摘Ultrafine Milling technology is used to treat gold-bearingsulphides and to investigate the effects of minerals size, millingtime, liquid/solid ratio, NaCN consumption and leaching aid onleaching rate of gold. The results indicate that shorter treatingtime, decrease of NaCN consumption of 60/100 and increase of goldleaching rate of 15/100 can be ob- tained by the ultrafine millingtechnology compared with traditional cyanide leaching. Potentialexists for the new pro- cess to form the basis for an economicallyprocess for treatment of gold-bearing sulphides.
文摘The ore-bearing belts, specialized for precious metals, are substantia ted to exist in the south Far East of Russia. The longest of which is the Amursk y gold-bearing belt extended from the Amur River mouth to the Ussuri River lowe r course and further to the southwest on China territory, probably, to the Sungar i River head. The fact that we have distinguished the Amursky and other gold-be a ring belts, make it possible to reevaluate the perspectives of the South Far Eas t of Russia and North-East China for new deposits of precious metals.
基金National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 61875047)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011).
文摘A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
文摘The thiourea leaching of gold from the calcine of gold-bearing arsenical pyrite concentrate of Kangjiawan mine was studied.The effects of the leaching time,the concentrations of thiourea,hydrochloric acid and initial ferric ion on the leaching recovery of gold were investigated,and a regressive model has been established,which showed that the concentrations of thiourea and hydrochloric acid were the most important factors,leaching time the second,and concentration of the initial ferric ion the least・Under the optimal conditions,that is,temperature 50℃,the ratio of liquid to solid 4:1,thiourea 12g/L,hydrochloric acid 1 mol/L,and initial ferric ion 1 g/L,the leaching recoveries of gold and silver were more than 81%and 73%,respectively.The increase of silver recovery and the reduction of thiourea consumption could be attained when sodium sulphite was added.
文摘In central Inner Mongolia, five gold bearing formations (Xiajining, Dongwufenzi, Wulashan, Baiyunebo and Bainaimiao Groups) belong either to volcano sedimentation or clasolite sedimentation. They formed in different tectonic environments such as an Archean rift zone (Xiajining and Dongwufenzi Groups), an Early Proterozoic stable basin (Wulashan Group), a Middle to Late Proterozoic continental rift zone (Baiyunebo Group), and a Paleozoic island arc environment (Bainaimiao Group). Gold contents in the gold bearing formations in the area are higher than those of other gold bearing formations in the North China Craton. However, as most gold bearing formations in the area are limited, there are a few big gold deposits in central Inner Mongolia. Gold contents in all formations were strongly influenced by migmatization and ductile shearing, the former process prompting mobilization, and the latter process resulting in gold enrichment in ductile shear zones. During the development of Archean to Proterozoic gold bearing formations, gold migrated from the mantle to the crust, then through the crust, finally deposited at the earth’s surface.
基金supported by the Natural Science Foundation of China (Grant No.12234005)the major research and development program of Jiangsu Province (Grant Nos.BE2021007-2 and BK20222007)。
文摘Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.
文摘1. Material composition of the geosynclinal tectonic LayerThe geosynclinal tectonic layer is mainly composed of the following two parts: sandyslate rocks of Precambrin and volcanic rocks inbeded within the sand-slate rocks.The sandy-slate rocks embrace the chemical compositional characteristics of light metamorphic rocks: SiO<sub>2</sub>=54.56<sup>8</sup>1.63(Wt%), with average of 63.96(wt%)(n=58, the same as following); Al<sub>2</sub>O<sub>3</sub>=9.47<sup>1</sup>7.75(wt%), with average of 15.36(wt%), and Al<sub>2</sub>O<sub>3</sub>】K<sub>2</sub>O+Na<sub>2</sub>O+CaO; the content of (FeO+Fe<sub>2</sub>O<sub>3</sub>) varies greatly with FeO】Fe<sub>2</sub>O<sub>3</sub>; (CaO+MgO)=0.78<sup>9</sup>.22 (wt%)with average of 23 (wt%), and MgO】CaO; the ratios of K<sub>2</sub>O/Na<sub>2</sub>O rang from 2 to 4(】1). By comparing all this chemical data with that of the other kind rocks, We can know that the sand y-slate rocks were the eunic and /or bathyal sediments which formed under the strongly active eugeosynclinal tectonic setting.
基金the National Natural Science Foundation of China(Nos.41930428,U2344205,42363009,42002089)the Jiangxi Provincial Natural Science Foundation(Nos.20224BAB213040,20224BAB203036,20224ACB203008)+1 种基金the DHBK project from East China University of Technology(DHBK2019320)the Graduate Innovation Fund from East China University of Technology(YC2023-S554).
文摘The Songshugang deposit is a large Ta-Nb deposit in South China,with Ta-Nb mineralization associated genetically with the granite and pegmatite.A diversity of quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite at Songshugang was studied by CL and LA-ICP-MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits.Cathodoluminescence image illuminates a canvas of complexity,the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,exhibits numerous dark CL streaks,patches,and a series of healed fractures.These textures suggest that the rocks were fractured because of deep crustal pressure,and underwent later hydrothermal metasomatism and quartz filling.The quartz from quartz-fluorite pegmatite present limited patches or fractures but distinct growth bands,indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less aff ected by mechanical fragmentation.The LA-ICP-MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,to quartz-fluorite pegmatite,indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li.However,our data deviate from the theoretical Li:Al mass ratio of~1:3.89 in quartz,indicating that there may be competition between H^(+)and Li in a water-rich magmatic environment.The quartz from topaz-albite granite is enriched in K and Na elements,and the quartz from quartz-fluorite pegmatite is enriched in fluorite with a low Ca content in quartz,further elucidating that these rocks were subjected to hydrothermal metasomatism.From topaz-albitite granite to quartz-fluorite pegmatite,Al,Li and Ge content and Al/Ti,Ge/Ti,Sb/Ti ratios in quartz gradually increased,but Ti content gradually decreased,reflecting the high evolution of magma,which can enrich rare metal elements.Based on the characteristics of quartz CL textures and trace elements in topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,combined with the albitization and K-feldspathization of rocks,it is suggested that the Nb-Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism.By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world,the Songshugang pegmatite share similarities with the LCT-type pegmatite.Combined with previous studies,the Ge/Ti>0.1 and Ti<10 ppm,as well as Al,Li,Ge,Sb,K,Na contents and Al/Ti,Sb/Ti ratios in quartz have the potential to be a powerful exploration marker for identifying granite-like pegmatitic Nb-Ta deposits in other places.
基金This study is financially supported by the National Science Fund for Distinguished Young Scholars(No.42025301)Guizhou Provincial 2020 Science and Technology Subsidies(No.GZ2020SIG).
文摘The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.
基金the financial support from the National Key Research and Development Program of China(No.2018YFC1903403)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
文摘The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by means of zeta potential measurement and infrared spectroscopic analysis. The single mineral experiments showed that andalusite got good floatability in acidic pH region while quartz exhibited very poor floatability in the whole pH range. At pH 3, the presence of Fe3+ obviously activated quartz, causing the identical flotation behavior of the two minerals, and calcium lignosulphonate exhibited good selective inhibition to quartz. The real ore test results showed that andalusite concentrate with 53.46% Al2O3 and quartz concentrate with 92.74% SiO2 were obtained. The zeta potential and infrared spectroscopic analysis results indicated that chemical adsorption occurred between sodium petroleum sulfonate and andalusite.
基金Project(51464029)supported by the National Natural Science Foundation of ChinaProject(2014M562343)supported by the China Postdoctoral Science FoundationProject(KKSY201421110)supported the Scholar Development Project of Yunnan Province,China
文摘The volume defects in pure pyrite and quartz from a classical Cu-Pb-Zn-Fe sulfide deposit were investigated.The results indicate that a large number of volume defects exist in natural pyrite and quartz.The volume defects assume a variety of shapes,including long strips,oval shapes and irregular shapes,with sizes ranging from a few microns to dozens of microns.These volume defects are rich in metallogenic elements as a result of the capture of metallogenic and mineralizing fluid during the defect-forming process.The volume defects are fractured during the grinding process,and their chemical components are released into the solution,as confirmed by the abundant presence of various metal and non-metal components in the cleaning water and EDS results.Under the experimental conditions of 10 g pyrite or quartz with grinding fineness of d90=37 μm,which was cleaned in 40 m L of pure deionised water under an inert atmosphere,the total average concentrations of Cu,Pb,Zn,Fe,Ca,Mg and Cl-in the aqueous solution are 32.09×10^-7,16.51×10^-7,19.45×10^-7,516.52×10^-7,129.50×10^-7,35.30×10^-7 and 433.80×10^-7 mol/L,respectively,for pyrite and 19.20×10^-7,8.88×10^-7,8.31×10^-7,82.71×10^-7,16.21×10^-7,4.28×10^-7 and 731.26×10^-7 mol/L,respectively,for quartz.These values are significantly greater than those from the experimental non-oxidative dissolution of the pyrite or quartz,respectively.Therefore,the metallogenic fluid in volume defects of mineral crystal is concluded to represent the dominant contribution to the solution chemistry of sulfide flotation pulp.The present investigation will help to deeply understand the flotation theory of sulfide minerals.
文摘The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed.