This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
为了提高异构多核处理器平台的计算性能,从任务调度的角度出发,提出了一种使用黄金正弦和莱维飞行机制改进的麻雀搜索算法(Fusion of Golden Sinusoidal and Levy Flight in Sparrow Search Algorithm,GSLF-SSA)来优化异构多核处理器的...为了提高异构多核处理器平台的计算性能,从任务调度的角度出发,提出了一种使用黄金正弦和莱维飞行机制改进的麻雀搜索算法(Fusion of Golden Sinusoidal and Levy Flight in Sparrow Search Algorithm,GSLF-SSA)来优化异构多核处理器的任务调度。通过对异构任务调度的分析,将异构任务建模为DAG(Directed Acyclic Graph)任务模型,通过对其优先级进行随机编码分配,实现了GSLF-SSA算法求解域从连续到离散的映射,使该算法更能适用于异构多核任务调度之中。将DAG任务的最优调度长度作为算法的适应度值进行迭代寻优,通过与目前应用广泛的麻雀搜索算法(SSA)、混合式任务调度算法(IHSSA)、人工蜂群算法(ABC)等多种启发式算法在异构任务调度环境下的实验对比表明,GSLF-SSA能获得更优的调度长度与更短的调度执行时间。展开更多
为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCO...为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCOSSA)来优化XGBoost参数。采用黄金正弦搜索策略来更新发现者位置,既增强全局搜索能力又增强局部搜索能力;在算法中引入反向学习策略和柯西变异进行扰动来扩大搜索领域改善陷入局部最优,同时使用贪婪规则确定最优解;将改进的算法用6个基准函数进行测试,并对SSA和GCOSSA进行对比,评估GCOSSA寻优性能;用GCOSSA优化XGBoost参数。在数据集上测试,并与网格搜索寻优、SSA及其混合正余弦改进算法(improved sparrow search algorithm based on sine and cosine,ISSA)方法进行对比。结果表明改进后的GCOSSA优化XGBoost参数,在信贷风险预测中准确率更高。展开更多
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
文摘为了提高异构多核处理器平台的计算性能,从任务调度的角度出发,提出了一种使用黄金正弦和莱维飞行机制改进的麻雀搜索算法(Fusion of Golden Sinusoidal and Levy Flight in Sparrow Search Algorithm,GSLF-SSA)来优化异构多核处理器的任务调度。通过对异构任务调度的分析,将异构任务建模为DAG(Directed Acyclic Graph)任务模型,通过对其优先级进行随机编码分配,实现了GSLF-SSA算法求解域从连续到离散的映射,使该算法更能适用于异构多核任务调度之中。将DAG任务的最优调度长度作为算法的适应度值进行迭代寻优,通过与目前应用广泛的麻雀搜索算法(SSA)、混合式任务调度算法(IHSSA)、人工蜂群算法(ABC)等多种启发式算法在异构任务调度环境下的实验对比表明,GSLF-SSA能获得更优的调度长度与更短的调度执行时间。
文摘为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCOSSA)来优化XGBoost参数。采用黄金正弦搜索策略来更新发现者位置,既增强全局搜索能力又增强局部搜索能力;在算法中引入反向学习策略和柯西变异进行扰动来扩大搜索领域改善陷入局部最优,同时使用贪婪规则确定最优解;将改进的算法用6个基准函数进行测试,并对SSA和GCOSSA进行对比,评估GCOSSA寻优性能;用GCOSSA优化XGBoost参数。在数据集上测试,并与网格搜索寻优、SSA及其混合正余弦改进算法(improved sparrow search algorithm based on sine and cosine,ISSA)方法进行对比。结果表明改进后的GCOSSA优化XGBoost参数,在信贷风险预测中准确率更高。