Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experi...Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.展开更多
Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of wat...Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies.展开更多
Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced ch...Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced challenging circumstances over the past 20 years due to complex climatic variations,leading to extreme flooding and drought.This study aims to investigate the spatiotemporal variation in terrestrial water storage anomalies(TWSA)over the DLB using data from the GRACE/GRACE-FO and GLDAS spanning the latest two decades.A significant decline trend in TWSA is unveiled from July 2019 to May 2023,with the rate of change determined as-1.94 cm/year and-1.99 cm/year based on the GRACE/GRACE-FO and GLDAS,respectively.The GRACE-Drought Severity Index(DSI)is employed to identify and evaluate the severity and spatiotemporal evolution of the 2022 drought event in the DLB.The results accurately capture the drought event,which began in July 2022 and continued until March 2023,with the most severe conditions occurring in October 2022,when the GRACE-DSI value stood at-2.06 and the TWSA decreased by 15.24 cm and 33.51 cm relative to the same month in 2021 and 2020,respectively.Additionally,the daily water level variation at the Chenglingji hydrological gauging station in 2022 broke previous records,reaching a minimum of only 19 m.Comparing the 2022 drought event with the drought events in 2006 and 2011,the impact of drought on vegetation growth conditions was relatively small,but there was still significant vegetation degradation across the DLB.展开更多
Brain-Machine Interface System Unveiled at Zhongguancun Forum The NeuCyber Array BMI System,a self-developed brain-machine interface(BMI)system from China,was unveiled at the opening ceremony of the 2024 Zhongguancun ...Brain-Machine Interface System Unveiled at Zhongguancun Forum The NeuCyber Array BMI System,a self-developed brain-machine interface(BMI)system from China,was unveiled at the opening ceremony of the 2024 Zhongguancun Forum(ZGC Forum)on April 25 in Beijing.At the forum,a video demonstration revealed a remarkable feat:a monkey,with its hands restrained and soft electrode filaments implanted in its brain,grasped a strawberry with an isolated robotic arm that was controlled by simply using its"thoughts."展开更多
Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope...Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.展开更多
This paper addresses the free transverse vibrations of thin simply supported nonhomogeneous isotropic rectangular plates of bilinearly varying thickness with elastically restrained edges against rotation. The Gram-Sch...This paper addresses the free transverse vibrations of thin simply supported nonhomogeneous isotropic rectangular plates of bilinearly varying thickness with elastically restrained edges against rotation. The Gram-Schmidt process has been used to generate two-dimensional boundary characteristic orthogonal polynomials, which have been used in the Rayleigh-Ritz method to study the problem. The lowest three frequencies have been computed for various values of nonhomogeneous parameters, thickness parameters, aspect ratio and flexibility parameters. A comparison of the results with those available in the literature has been made. Three-dimensional mode shapes for the specified plate have been presented.展开更多
Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stres...Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits as well as sustained cerebral iniurv in the adult hippocampus.展开更多
An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification ...An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS ...Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center,Lehigh University to prepare for an upcoming experimental program.The analysis program DRAIN-2DX was used to model a one-bay,four-story prototype BRBF including material and geometric nonlinearities.The buckling- restrained brace(BRB)model incorporates both isotropic and kinematic hardening.Nonlinear static pushover and time- history analyses were performed on the prototype BRBF.Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results.Particular emphasis was placed on global ductility demands and ductility demands on the BRBs.These demands were compared with anticipated ductility capacities.The analysis results,along with results from similar previous studies,are used to evaluate the BRBF design provisions that have been recommended for codification in the United States.The results show that BRB maximum ductility demands can be as high as 20 to 25.These demands significantly exceed those anticipated by the BRBF recommended provisions.Results from the static pushover and time- history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5.Modifications to the testing protocol are recommended.展开更多
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance meth...Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.展开更多
A pile-restrained pontoon-plate floating breakwater is proposed in this paper. The laboratory physical-model tests are conducted to investigate the wave-dissipation property and heave-motion response of a model. The i...A pile-restrained pontoon-plate floating breakwater is proposed in this paper. The laboratory physical-model tests are conducted to investigate the wave-dissipation property and heave-motion response of a model. The influence of the model's geometric parameters including relative pontoon width, plate width, number of plates and pontoon draft on wavedissipation performance and heave-motion response are discussed, as well as the correlation between these two factors. The result indicates that wave-dissipation performance of the proposed structure is better than the pontoon structure: its transmission coefficient and heave-motion height are reduced by 0.2 and 0.3, respectively, in comparison with those of the pile-restrained pontoon model at a relative pontoon width of 0.2.展开更多
For a better understanding of the strains and stresses,numerical simulation was conducted by using ANSYS under the assumption of absolute bond between the steel and concrete.The results show that the stresses and stra...For a better understanding of the strains and stresses,numerical simulation was conducted by using ANSYS under the assumption of absolute bond between the steel and concrete.The results show that the stresses and strains in such concrete and steel rings are uneven;the curves of strains and stresses change gradually around the interface.To ease numerical computation,the mechanical system was simplified under the assumptions of synchronous deformation and uniform strains and stresses.The results of the numerical simulation and simplified stress calculation can match almost perfectly.It means that the simplified mechanical model can be used in stress and visco-elastic behavior quantification.展开更多
Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant...Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant as they affect the formation and distribution of the oil and gas in these three sub-sags.However,the differences in their tectonic evolutions and formation mechanisms have not yet been adequately explained.In this paper,stress analysis,equilibrium profiles,and paleogeomorphic restora-tion,are used to investigate the dynamic settings,formation mechanisms,and influencing factors of the structural deformation related to the formation of the Wenchang Sag based on interpretation of seismic data.The results of the stress analysis suggest clockwise deflection of the regional tensile stress direction from a WNW-ESE trend during the Early Paleocene to NW-SE and NNW-SSE trends during the Eocene,to a nearly N-S trend during the Oligocene,and finally to a NNE-SSW trend during the Miocene.This clockwise rotation of the regional tensile stress direction led to the formation of a dextral strike-slip stress component parallel to the NE-trending Zhu I South Fault.This strike-slip stress component formed a releasing bend in sub-sag A,and may be associated with the continuous subsidence of a thick sedimentary layer in sub-sag A.It also created a restraining bend in sub-sag B,which underwent multiple structural inversions during its extension and subsidence and has a relatively s mall sedimentary thick-ness.The double restraining bend in sub-sag C is considered to have been strongly uplifted and eroded in response to this strike-slip stress component.Four obvious structural inversions in sub-sag B are iden-tified in this paper.These structural inversions correspond to the last four regional tectonic movements.This interpretation suggests that the formation of the structural inversions was likely related to the strong tensile stress and the small intersection angle between the direction of the regional tensile stress and the pre-existing boundary fault.The rotation of the tensile stress direction was responsible for the strike-slip movement on the pre-existing boundary fault and the formation of the releasing bend and restraining bend,which controlled the structural evolutions of the sub-sags.This reasonably explains the differential tectonic evolution of these three sub-sags in the Wenchang Sag,and provides a crucial idea forstructuralanalysisof similarbasins.展开更多
The satellite gravimetry technology effectively recovers the global Earth’s gravity field.Since 2000s,HL-SST satellite CHAMP,LL-SST satellite GRACE,Gravity Gradient Measurement(GGM)satellite GOCE have been launched s...The satellite gravimetry technology effectively recovers the global Earth’s gravity field.Since 2000s,HL-SST satellite CHAMP,LL-SST satellite GRACE,Gravity Gradient Measurement(GGM)satellite GOCE have been launched successfully,producing some Earth’s gravity models solely from satellites data.However,the space and time resolution of the Earth’s gravity fields do not adequately satisfy scientific objectives.The main reason is that the gravimetry satellites are not enough and observation data insufficient.The paper outlines the current and future status of Chinese gravity satellite missions.The Chinese gravimetry satellite system,named Chinese Gravimetry augment and Mass change exploring mission(ChiGaM),successfully launched in Dec.2021 after four years of production and over a year of calibration and valiation.The accelerometer,K-band ranging system and the three stellar sensors,among others,were precisely calibrated and trimmed.The satellite mass center was determined and coordinated with the proof center of accelerometer with an accuracy 100μm.The inter-satellite ranging system and BDS/GPS receiver operate together seamlessly.The range and range rate noise is less than 3μm/Hz^(1/2) and 1μm/s/Hz^(1/2),respectively,in band of 0.025~0.1 Hz.The electrostatic suspension accelerometer is working well.Its high-sensitive axis noise level is 3×10^(-10) m/s^(2)/Hz^(1/2)near the frequency 0.1 Hz,and 1×10^(-9) m/s^(2)/Hz^(1/2) for the less-sensitive axis.Meanwhile the BDS/GPS receiver is used to achieve data for precise orbit determination,yielding an orbit result with accuracy better than 2 cm.When compared with KBR observations,the RMS of the bias is less than 1 mm.Besides above mission,next gravimetric satellite is being developed now.TQ-2 mission is designed as a totally experimental satellite for gravitational wave detection at low Earth orbit,which can detect the Earth’s gravity field simultaneously.The Bender-type mission is considered the most promising configuration for TQ-2 and consists of two polar satellites and two inclined satellites.Due to the extra observations at the east-west direction derived from the inclined satellite pair,significant improvements has been made in detecting temporal signals with higher accuracy and spatial-temporal resolution.To achieve the scientific goal,the ACC MBW can shift from 0.001~0.1 Hz to 0.004~0.1 Hz for ACC,and the LRI MBW can shift from 0.01~1 Hz to 0.1~1 Hz.For future research,a gravimetric potential survey using cold-atomic-clock based on the general relativity theory,cold atom gradiometer should be pursued.Gravimetric technologies should be mined and researched,and the gravimetry satellite constellation should be developed,so as to improve the time resolution and space resolution for meeting the requirements of geophysics,geodesy,earthquake,water resources environment,oceanography,etc.展开更多
The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science a...The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science and has generated revolutionary changes.Because of natural phenomena such as climate warming,glacial melting,sea level rise,and earthquakes,earth science research has become an increasingly popular discipline in recent years.This article summarizes the importance of GRACE time-varying gravity,its application to geoscience,and its development.We analyzed the historical development and current status of GRACE time-varying gravity as well as research hotspots by searching the literature in the core collection databases of the China National Knowledge Infrastructure and the Web of Science over the past 20 years.The CiteSpace and VOSviewer software packages were applied with reference to the principle of literature metrology.Our investigation and analysis of characteristic indexes,such as the numbers of publications,co-occurrence of keywords,and co-citation of documents,uncovered the wide application and promotion of gravity satellites,especially GRACE time-varying gravity,in earth science.The results showed that the number of publications addressing GRACE data and time-varying gravity theory is increasing annually and that the USA,China,and Germany are the main producers.The Chinese Academy of Sciences,the National Aeronautics and Space Administration of the United States,and the Helmholtz Association of German Research Centres rank among the top three institutions in the world in terms of producing the most publications on this topic.We found that GRACE time-varying gravity plays unique roles in measuring changes in terrestrial water storage changes,ice and snow melting and sea level changes,and(co)seismic gravity changes,as well as in promoting other disciplines.展开更多
Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression b...Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.展开更多
LOCATED in GuizhouProvince, southwesternChina, Qianxinan Bouyei-Miao AutonomousPrefecture is a tourist destination,due to its extraordinary naturalenvironment and distinctive
基金supported by the National natural Science Foundation of China [grant numbers 12172198, 11272189 and 52078283]Youth Innovation Technology Project of Higher School in Shandong Province [grant number 2019KJG015]。
文摘Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.
基金supported in part by the National Natural Science Foundation of China under Grant 42374037the State Key Laboratory of Geodesy and Earth’s Dynamics,Innovation Academy for Precision Measurement Science and Technology under Grant SKLGED2022-3-5in part by the Outstanding Youth Science Fund of Xi’an University of Science and Technology under Grant 2018YQ2-10。
文摘Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies.
基金funded by the National Natural Science Foundation of China(grant numbers 42274111,41931074,42274113)。
文摘Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced challenging circumstances over the past 20 years due to complex climatic variations,leading to extreme flooding and drought.This study aims to investigate the spatiotemporal variation in terrestrial water storage anomalies(TWSA)over the DLB using data from the GRACE/GRACE-FO and GLDAS spanning the latest two decades.A significant decline trend in TWSA is unveiled from July 2019 to May 2023,with the rate of change determined as-1.94 cm/year and-1.99 cm/year based on the GRACE/GRACE-FO and GLDAS,respectively.The GRACE-Drought Severity Index(DSI)is employed to identify and evaluate the severity and spatiotemporal evolution of the 2022 drought event in the DLB.The results accurately capture the drought event,which began in July 2022 and continued until March 2023,with the most severe conditions occurring in October 2022,when the GRACE-DSI value stood at-2.06 and the TWSA decreased by 15.24 cm and 33.51 cm relative to the same month in 2021 and 2020,respectively.Additionally,the daily water level variation at the Chenglingji hydrological gauging station in 2022 broke previous records,reaching a minimum of only 19 m.Comparing the 2022 drought event with the drought events in 2006 and 2011,the impact of drought on vegetation growth conditions was relatively small,but there was still significant vegetation degradation across the DLB.
文摘Brain-Machine Interface System Unveiled at Zhongguancun Forum The NeuCyber Array BMI System,a self-developed brain-machine interface(BMI)system from China,was unveiled at the opening ceremony of the 2024 Zhongguancun Forum(ZGC Forum)on April 25 in Beijing.At the forum,a video demonstration revealed a remarkable feat:a monkey,with its hands restrained and soft electrode filaments implanted in its brain,grasped a strawberry with an isolated robotic arm that was controlled by simply using its"thoughts."
基金Science Council in Chinese Taipei Under Grant No.NSC 94-2211-E-035-015
文摘Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.
文摘This paper addresses the free transverse vibrations of thin simply supported nonhomogeneous isotropic rectangular plates of bilinearly varying thickness with elastically restrained edges against rotation. The Gram-Schmidt process has been used to generate two-dimensional boundary characteristic orthogonal polynomials, which have been used in the Rayleigh-Ritz method to study the problem. The lowest three frequencies have been computed for various values of nonhomogeneous parameters, thickness parameters, aspect ratio and flexibility parameters. A comparison of the results with those available in the literature has been made. Three-dimensional mode shapes for the specified plate have been presented.
基金the Natural Science Research Project from Bureau of Public Health of Sichuan Province,No. 090194the Natural Science Research Project of Science Technology Bureau of Luzhou,No. 090102
文摘Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits as well as sustained cerebral iniurv in the adult hippocampus.
基金supported by the National Natural Science Foundation of China(61073106)the Aerospace Science and Technology Innovation Fund(CASC201105)
文摘An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
文摘Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center,Lehigh University to prepare for an upcoming experimental program.The analysis program DRAIN-2DX was used to model a one-bay,four-story prototype BRBF including material and geometric nonlinearities.The buckling- restrained brace(BRB)model incorporates both isotropic and kinematic hardening.Nonlinear static pushover and time- history analyses were performed on the prototype BRBF.Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results.Particular emphasis was placed on global ductility demands and ductility demands on the BRBs.These demands were compared with anticipated ductility capacities.The analysis results,along with results from similar previous studies,are used to evaluate the BRBF design provisions that have been recommended for codification in the United States.The results show that BRB maximum ductility demands can be as high as 20 to 25.These demands significantly exceed those anticipated by the BRBF recommended provisions.Results from the static pushover and time- history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5.Modifications to the testing protocol are recommended.
基金Funded by National Natural Science Foundation of China(Nos.51478200 and 51178202)
文摘Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.
基金supported by the National Natural Science Foundation of China(Grant No.50479054)
文摘A pile-restrained pontoon-plate floating breakwater is proposed in this paper. The laboratory physical-model tests are conducted to investigate the wave-dissipation property and heave-motion response of a model. The influence of the model's geometric parameters including relative pontoon width, plate width, number of plates and pontoon draft on wavedissipation performance and heave-motion response are discussed, as well as the correlation between these two factors. The result indicates that wave-dissipation performance of the proposed structure is better than the pontoon structure: its transmission coefficient and heave-motion height are reduced by 0.2 and 0.3, respectively, in comparison with those of the pile-restrained pontoon model at a relative pontoon width of 0.2.
基金Funded by the National Natural Science Foundation of China (No.50678054)
文摘For a better understanding of the strains and stresses,numerical simulation was conducted by using ANSYS under the assumption of absolute bond between the steel and concrete.The results show that the stresses and strains in such concrete and steel rings are uneven;the curves of strains and stresses change gradually around the interface.To ease numerical computation,the mechanical system was simplified under the assumptions of synchronous deformation and uniform strains and stresses.The results of the numerical simulation and simplified stress calculation can match almost perfectly.It means that the simplified mechanical model can be used in stress and visco-elastic behavior quantification.
基金supported by the National Natural Science Foundation of China(Grant No.9132820142006068)Shandong Special Fund of Qingdao National Laboratory of Marine Science and Technology(No.2021QNLM020001-1).
文摘Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant as they affect the formation and distribution of the oil and gas in these three sub-sags.However,the differences in their tectonic evolutions and formation mechanisms have not yet been adequately explained.In this paper,stress analysis,equilibrium profiles,and paleogeomorphic restora-tion,are used to investigate the dynamic settings,formation mechanisms,and influencing factors of the structural deformation related to the formation of the Wenchang Sag based on interpretation of seismic data.The results of the stress analysis suggest clockwise deflection of the regional tensile stress direction from a WNW-ESE trend during the Early Paleocene to NW-SE and NNW-SSE trends during the Eocene,to a nearly N-S trend during the Oligocene,and finally to a NNE-SSW trend during the Miocene.This clockwise rotation of the regional tensile stress direction led to the formation of a dextral strike-slip stress component parallel to the NE-trending Zhu I South Fault.This strike-slip stress component formed a releasing bend in sub-sag A,and may be associated with the continuous subsidence of a thick sedimentary layer in sub-sag A.It also created a restraining bend in sub-sag B,which underwent multiple structural inversions during its extension and subsidence and has a relatively s mall sedimentary thick-ness.The double restraining bend in sub-sag C is considered to have been strongly uplifted and eroded in response to this strike-slip stress component.Four obvious structural inversions in sub-sag B are iden-tified in this paper.These structural inversions correspond to the last four regional tectonic movements.This interpretation suggests that the formation of the structural inversions was likely related to the strong tensile stress and the small intersection angle between the direction of the regional tensile stress and the pre-existing boundary fault.The rotation of the tensile stress direction was responsible for the strike-slip movement on the pre-existing boundary fault and the formation of the releasing bend and restraining bend,which controlled the structural evolutions of the sub-sags.This reasonably explains the differential tectonic evolution of these three sub-sags in the Wenchang Sag,and provides a crucial idea forstructuralanalysisof similarbasins.
基金National Key R&D Program of China(No.2021YFB3900604)。
文摘The satellite gravimetry technology effectively recovers the global Earth’s gravity field.Since 2000s,HL-SST satellite CHAMP,LL-SST satellite GRACE,Gravity Gradient Measurement(GGM)satellite GOCE have been launched successfully,producing some Earth’s gravity models solely from satellites data.However,the space and time resolution of the Earth’s gravity fields do not adequately satisfy scientific objectives.The main reason is that the gravimetry satellites are not enough and observation data insufficient.The paper outlines the current and future status of Chinese gravity satellite missions.The Chinese gravimetry satellite system,named Chinese Gravimetry augment and Mass change exploring mission(ChiGaM),successfully launched in Dec.2021 after four years of production and over a year of calibration and valiation.The accelerometer,K-band ranging system and the three stellar sensors,among others,were precisely calibrated and trimmed.The satellite mass center was determined and coordinated with the proof center of accelerometer with an accuracy 100μm.The inter-satellite ranging system and BDS/GPS receiver operate together seamlessly.The range and range rate noise is less than 3μm/Hz^(1/2) and 1μm/s/Hz^(1/2),respectively,in band of 0.025~0.1 Hz.The electrostatic suspension accelerometer is working well.Its high-sensitive axis noise level is 3×10^(-10) m/s^(2)/Hz^(1/2)near the frequency 0.1 Hz,and 1×10^(-9) m/s^(2)/Hz^(1/2) for the less-sensitive axis.Meanwhile the BDS/GPS receiver is used to achieve data for precise orbit determination,yielding an orbit result with accuracy better than 2 cm.When compared with KBR observations,the RMS of the bias is less than 1 mm.Besides above mission,next gravimetric satellite is being developed now.TQ-2 mission is designed as a totally experimental satellite for gravitational wave detection at low Earth orbit,which can detect the Earth’s gravity field simultaneously.The Bender-type mission is considered the most promising configuration for TQ-2 and consists of two polar satellites and two inclined satellites.Due to the extra observations at the east-west direction derived from the inclined satellite pair,significant improvements has been made in detecting temporal signals with higher accuracy and spatial-temporal resolution.To achieve the scientific goal,the ACC MBW can shift from 0.001~0.1 Hz to 0.004~0.1 Hz for ACC,and the LRI MBW can shift from 0.01~1 Hz to 0.1~1 Hz.For future research,a gravimetric potential survey using cold-atomic-clock based on the general relativity theory,cold atom gradiometer should be pursued.Gravimetric technologies should be mined and researched,and the gravimetry satellite constellation should be developed,so as to improve the time resolution and space resolution for meeting the requirements of geophysics,geodesy,earthquake,water resources environment,oceanography,etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.42174097,41974093,and 41774088).
文摘The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science and has generated revolutionary changes.Because of natural phenomena such as climate warming,glacial melting,sea level rise,and earthquakes,earth science research has become an increasingly popular discipline in recent years.This article summarizes the importance of GRACE time-varying gravity,its application to geoscience,and its development.We analyzed the historical development and current status of GRACE time-varying gravity as well as research hotspots by searching the literature in the core collection databases of the China National Knowledge Infrastructure and the Web of Science over the past 20 years.The CiteSpace and VOSviewer software packages were applied with reference to the principle of literature metrology.Our investigation and analysis of characteristic indexes,such as the numbers of publications,co-occurrence of keywords,and co-citation of documents,uncovered the wide application and promotion of gravity satellites,especially GRACE time-varying gravity,in earth science.The results showed that the number of publications addressing GRACE data and time-varying gravity theory is increasing annually and that the USA,China,and Germany are the main producers.The Chinese Academy of Sciences,the National Aeronautics and Space Administration of the United States,and the Helmholtz Association of German Research Centres rank among the top three institutions in the world in terms of producing the most publications on this topic.We found that GRACE time-varying gravity plays unique roles in measuring changes in terrestrial water storage changes,ice and snow melting and sea level changes,and(co)seismic gravity changes,as well as in promoting other disciplines.
基金Federal Highway Administration Under Grant No. DDEGRD-06-X-00408
文摘Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.
文摘LOCATED in GuizhouProvince, southwesternChina, Qianxinan Bouyei-Miao AutonomousPrefecture is a tourist destination,due to its extraordinary naturalenvironment and distinctive