期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling 被引量:2
1
作者 Yingjun Jiang Louis Ngai Yuen Wong Jiaolong Ren 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第2期107-115,共9页
In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed fo... In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GGRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0-3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the GBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the GBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GGRs and to optimize the grading design. Be- sides, the numerical study can provide useful insights on the mesoscopic mechanism. 展开更多
关键词 graded crushed rocks Particle flow modeling California bearing ratio Numerical test Micro-mechanical parametersMesoscopic mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部