期刊文献+
共找到273篇文章
< 1 2 14 >
每页显示 20 50 100
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
1
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
下载PDF
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
2
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium
3
作者 Quoc-Hoa Pham Van Ke Tran Phu-Cuong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期77-99,共23页
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ... An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums. 展开更多
关键词 Plate-fluid contact Galerkin Vlasov's method Multi-directional functionally graded plate Novel porosity Thermal vibration Refined higher-order shear deformation theory
下载PDF
Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fbers
4
作者 H.M.FEIZABAD M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期543-562,共20页
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar... Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams. 展开更多
关键词 bamboo fiber free vibration buckling analysis functionally graded(FG)beam elastic foundation generalized differential quadrature method(GDQM)
下载PDF
Functionally graded structure of a nitride-strengthened Mg_(2)Si-based hybrid composite
5
作者 Jeongho Yang Woongbeom Heogh +15 位作者 Hogi Ju Sukhyun Kang Tae-Sik Jang Hyun-Do Jung Mohammad Jahazi Seung Chul Han Seong Je Park Hyoung Seop Kim Susmita Bose Amit Bandyopadhyay Martin Byung-Guk Jun Young Won Kim Dae-kyeom Kim Rigoberto CAdvincula Clodualdo Aranas Jr Sang Hoon Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1239-1256,共18页
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde... The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations. 展开更多
关键词 Laser powder bed fusion Mg_(2)Si-SiC/nitride hybrid composite Both the thermal diffusion-and chemical reaction-based metallurgy functionally graded structure Compositional gradient Wear resistance.
下载PDF
Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation 被引量:1
6
作者 Zhaonian LI Juan LIU +2 位作者 Biao HU Yuxing WANG Huoming SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期35-52,共18页
This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed tha... This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates.The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined higher-order shear deformation theory.The scale effects of the nanoplates are captured by employing nonlocal strain gradient theory(NSGT).The motion equations are calculated in accordance with Hamilton’s principle.Finally,the dispersion characteristics of the nanoplates are numerically determined by using a harmonic solution.The results indicate that the nonlocal parameters(NLPs) and length scale parameters(LSPs) have exactly the opposite effects on the wave frequency.In addition,it is found that the effect of porosity volume fractions(PVFs) on the wave frequency depends on the gradient indices and damping coefficients.When these two values are small,the wave frequency increases with the volume fraction.By contrast,at larger gradient index and damping coefficient values,the wave frequency decreases as the volume fraction increases. 展开更多
关键词 scale effect functionally graded material(FGM) dispersion characteristic piezoelectric nanoplate viscoelastic foundation
下载PDF
Review of functionally graded materials processed by additive manufacturing 被引量:1
7
作者 宋学平 黄健康 樊丁 《China Welding》 CAS 2023年第3期41-50,共10页
Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparati... Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparation of functionally gradient materials(FGM),and has become a research hotspot at present.By referring to and analyzing the recent research achievements in the additive manufacturing tech-nology of FGM,the latest research progress at domestic and abroad from four aspects were summaried:selective laser melting additive man-ufacturing,electron beam additive manufacturing,arc additive manufacturing,path planning,and material texture.Moreover,the existing problems in the research are pointed out,and the future research direction and focus are prospected. 展开更多
关键词 functionally graded materials additive manufacture research progress
下载PDF
Complete solutions for elastic fields induced by point load vector in functionally graded material model with transverse isotropy
8
作者 Sha XIAO Zhongqi YUE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期411-430,共20页
The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with... The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with n-layered materials.Each of the n-layered materials is homogeneous and transversely isotropic.The complete solutions of the displacement and stress fields are explicitly expressed in the forms of fifteen classical Hankel transform integrals with ten kernel functions.The ten kernel functions are explicitly expressed in the forms of backward transfer matrices and have clear mathematical properties.The singular terms of the complete solutions are analytically isolated and expressed in exact closed forms in terms of elementary harmonic functions.Numerical results show that the computation of the complete solutions can be achieved with high accuracy and efficiency. 展开更多
关键词 functionally graded material(FGM) transverse isotropy ELASTICITY closedform singular solution Green's function point load vector
下载PDF
Bending and Free Vibration Analysis of Porous-Functionally-Graded(PFG)Beams Resting on Elastic Foundations
9
作者 Lazreg Hadji Fabrice Bernard Nafissa Zouatnia 《Fluid Dynamics & Materials Processing》 EI 2023年第4期1043-1054,共12页
The bending and free vibration of porous functionally graded(PFG)beams resting on elastic foundations are analyzed.The material features of the PFG beam are assumed to vary continuously through the thickness according... The bending and free vibration of porous functionally graded(PFG)beams resting on elastic foundations are analyzed.The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components.The foundation medium is also considered to be linear,homogeneous,and isotropic,and modeled using the Winkler-Pasternak law.The hyperbolic shear deformation theory is applied for the kinematic relations,and the equations of motion are obtained using the Hamilton’s principle.An analytical solution is presented accordingly,assuming that the PFG beam is simply supported.Comparisons with the open literature are implemented to verify the validity of such a formulation.The effects of the elastic foundations,porosity volume percentage and span-to-depth ratio are finally discussed in detail. 展开更多
关键词 BENDING free vibration porosity functionally graded material winkler-pasternak elastic foundation
下载PDF
Torsional postbuckling characteristics of functionally graded graphene enhanced laminated truncated conical shell with temperature dependent material properties
10
作者 Hamad M.Hasan Saad S.Alkhfaji Sattar A.Mutlag 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期272-279,共8页
Buckling and postbuckling characteristics of laminated graphene-enhanced composite(GEC)truncated conical shells exposed to torsion under temperature conditions using finite element method(FEM)simulation are presented ... Buckling and postbuckling characteristics of laminated graphene-enhanced composite(GEC)truncated conical shells exposed to torsion under temperature conditions using finite element method(FEM)simulation are presented in this study.In the thickness direction,the GEC layers of the conical shell are ordered in a piece-wise arrangement of functionally graded(FG)distribution,with each layer containing a variable volume fraction for graphene reinforcement.To calculate the properties of temperaturedependent material of GEC layers,the extended Halpin-Tsai micromechanical framework is used.The FEM model is verified via comparing the current results obtained with the theoretical estimates for homogeneous,laminated cylindrical,and conical shells,the FEM model is validated.The computational results show that a piece-wise FG graphene volume fraction distribution can improve the torque of critical buckling and torsional postbuckling strength.Also,the geometric parameters have a critical impact on the stability of the conical shell.However,a temperature rise can reduce the crucial torsional buckling torque as well as the GEC laminated truncated conical shell’s postbuckling strength. 展开更多
关键词 Torsional postbuckling Graphene enhanced composite functionally graded graphene Finite element method Conical shell
下载PDF
Cross-sectional warping and precision of the first-order shear deformation theory for vibrations of transversely functionally graded curved beams
11
作者 U.N.ARIBAS M.AYDIN +1 位作者 M.ATALAY M.H.OMURTAG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2109-2138,共30页
The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional w... The warping may become an important factor for the precise transverse vibrations of curved beams.Thus,the first aim of this study is to specify the structural design parameters where the influence of cross-sectional warping becomes great and the first-order shear deformation theory lacks the precision necessary.The outof-plane vibrations of the first-order shear deformation theory are compared with the warping-included vibrations as the curvature and/or thickness increase for symmetric and asymmetric transversely-functionally graded(TFG)curved beams.The second aim is to determine the influence of design parameters on the vibrations.The circular/exact elliptical beams are formed via curved mixed finite elements(MFEs)based on the exact curvature and length.The stress-free conditions are satisfied on three-dimensional(3D)constitutive equations.The variation of functionally graded(FG)material constituents is considered based on the power-law dependence.The cross-sectional warping deformations are defined over a displacement-type FE formulation.The warping-included MFEs(W-MFEs)provide satisfactory 3D structural characteristics with smaller degrees of freedom(DOFs)compared with the brick FEs.The Newmark method is used for the forced vibrations. 展开更多
关键词 mixed finite element(MFE) free vibration forced vibration WARPING exact elliptical beam functionally graded(FG)beam
下载PDF
Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory
12
作者 Xinte WANG Juan LIU +2 位作者 Biao HU Bo ZHANG Huoming SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1821-1840,共20页
This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is ... This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices. 展开更多
关键词 bi-directional functionally graded(FG) wave propagation dimensionless magneto-electro-elastic(MEE)nanoshell nonlocal strain gradient theory(NSGT) porosity
下载PDF
Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment
13
作者 Wenhao YUAN Haitao LIAO +1 位作者 Ruxin GAO Fenglian LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期897-916,共20页
This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham... This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties. 展开更多
关键词 porous foam functionally graded(FG)plate thermal environment natural frequency sound transmission loss(STL)
下载PDF
Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory
14
作者 Shaopeng WANG Jun HONG +1 位作者 Dao WEI Gongye ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1803-1820,共18页
A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain g... A new size-dependent axially functionally graded(AFG) micro-beam model is established with the application of a reformulated strain gradient elasticity theory(RSGET). The new micro-beam model incorporates the strain gradient, velocity gradient,and couple stress effects, and accounts for the material variation along the axial direction of the two-component functionally graded beam. The governing equations and complete boundary conditions of the AFG beam are derived based on Hamilton's principle. The correctness of the current model is verified by comparing the static behavior results of the current model and the finite element model(FEM) at the micro-scale. The influence of material inhomogeneity and size effect on the static and dynamic responses of the AFG beam is studied. The numerical results show that the static and vibration responses predicted by the newly developed model are different from those based on the classical model at the micro-scale. The new model can be applied not only in the optimization of micro acoustic wave devices but also in the design of AFG micro-sensors and micro-actuators. 展开更多
关键词 Timoshenko beam theory reformulated strain gradient elastic theory(RSGET) axially functionally graded(AFG)material Hamilton's principle
下载PDF
Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation
15
作者 Pei ZHANG P.SCHIAVONE Hai QING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期89-108,共20页
A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the f... A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined. 展开更多
关键词 two-phase nonlocal elasticity damping vibration functionally graded(FG)beam nonlocal viscoelastic Winkler-Pasternak foundation generalized differential quadrature method(GDQM)
下载PDF
Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model
16
作者 Pei ZHANG P.SCHIAVONE Hai QING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2071-2092,共22页
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ... We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented. 展开更多
关键词 nonlocal strain gradient integral model dynamic stability porous functionally graded(PFG)shear deformation beam size-dependent hygro-thermal load generalized differential quadrature method(GDQM)
下载PDF
BENDING OF FUNCTIONALLY GRADED PIEZOELECTRIC RECTANGULAR PLATES 被引量:37
17
作者 Chen Weiqiu Ding Haojiang 《Acta Mechanica Solida Sinica》 SCIE EI 2000年第4期312-319,共8页
By introducing two displacement functions as well as two stressfunctions, two independent state equations with variable coefficientsare derived from the three-dimensional theory equations of piezo-elasticity for trans... By introducing two displacement functions as well as two stressfunctions, two independent state equations with variable coefficientsare derived from the three-dimensional theory equations of piezo-elasticity for transverse isotropy. A laminated approximation is usedto transform the state equations to those with constant coefficientsin each sub-layer. The bending problem of a functionally gradedrectangular plate is then analyzed based on the state equations.Numerical results are presented and the effect of material gradi- entindex is discussed. 展开更多
关键词 functionally graded piezoelectric material transverse isotropy statespace method
下载PDF
Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer 被引量:7
18
作者 M.AREFI R.KARROUBI M.IRANI-RAHAGHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第7期821-834,共14页
An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear ... An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear deformation theory is used to model the electromechanical system. Nonlinear equations of motion are derived by considering the von Karman nonlinear strain-displacement relations using Hamilton's principle. The piezoelectric layers on the inner and outer surfaces of the core can be considered as a sensor and an actuator for controlling characteristic vibration of the system. The equations of motion are derived as partial differential equations and then discretized by the Navier method. Numerical simulation is performed to investigate the effect of different para- meters of material and geometry on characteristic vibration of the cylinder. The results of this study show that the natural frequency of the system decreases by increasing the non-homogeneous index of FGP layers and decreases by increasing the non-homogeneous index of the functionally graded core. Furthermore, it is concluded that by increasing the ratio of core thickness to cylinder length, the natural frequencies of the cylinder increase considerably. 展开更多
关键词 free vibration nonlinear analysis frequency analysis cylindrical shell functionally graded material (FGM) functionally graded piezoelectric material (FGPM)
下载PDF
Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories 被引量:10
19
作者 李世荣 万泽青 张静华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第5期591-606,共16页
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by con... The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail. 展开更多
关键词 functionally graded material (FGM) Timoshenko beam free vibration shooting method analogous transformation
下载PDF
Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere 被引量:10
20
作者 H. L. Dai Y.M. Fu J.H. Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第1期55-63,共9页
Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the externa... Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs. 展开更多
关键词 functionally graded piezoelectric material (FGPM) Electromagnetoelastic Solid cylinder Solid sphere Perturbation of magnetic field vector
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部