期刊文献+
共找到239篇文章
< 1 2 12 >
每页显示 20 50 100
Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment
1
作者 Mohamed Zarouan Ibrahim M.Mehedi +1 位作者 Shaikh Abdul Latif Md.Masud Rana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1341-1364,共24页
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu... Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects. 展开更多
关键词 Fault detection Industry 4.0 gradient optimizer algorithm deep learning rotating machineries artificial intelligence
下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems
2
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
下载PDF
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
3
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
下载PDF
Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-Based Learning 被引量:5
4
作者 Xin Luo Wen Qin +2 位作者 Ani Dong Khaled Sedraoui MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期402-411,共10页
A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and... A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability. 展开更多
关键词 Big data industrial application industrial data latent factor analysis machine learning parallel algorithm recommender system(RS) stochastic gradient descent(SGD)
下载PDF
基于生成模型的Q-learning二分类算法 被引量:1
5
作者 尚志刚 徐若灏 +2 位作者 乔康加 杨莉芳 李蒙蒙 《计算机应用研究》 CSCD 北大核心 2020年第11期3326-3329,3333,共5页
对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的... 对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的灵活性,同时在求解参数时,采用最小二乘时序差分(TD)算法和半梯度下降法的组合优化方法,加速了参数的收敛速度。设计实验对比了BGQ-learning算法与三种经典分类器以及一种新颖的分类器的分类性能,在UCI数据库七个数据集上的测试结果表明,该算法有着优良的稳定性以及良好的分类精确度。 展开更多
关键词 Q-learning 生成模型 二分类 最小二乘时序差分算法 半梯度下降法
下载PDF
Adaptive Error Curve Learning Ensemble Model for Improving Energy Consumption Forecasting 被引量:1
6
作者 Prince Waqas Khan Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2021年第11期1893-1913,共21页
Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptiv... Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models. 展开更多
关键词 Energy consumption meteorological features error curve learning ensemble model energy forecasting gradient boost catboost multilayer perceptron genetic algorithm
下载PDF
A UAV collaborative defense scheme driven by DDPG algorithm 被引量:1
7
作者 ZHANG Yaozhong WU Zhuoran +1 位作者 XIONG Zhenkai CHEN Long 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1211-1224,共14页
The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents ... The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process. 展开更多
关键词 deep deterministic policy gradient(DDPG)algorithm unmanned aerial vehicles(UAVs)swarm task decision making deep reinforcement learning sparse reward problem
下载PDF
Personalized movie recommendation method based on ensemble learning
8
作者 YANG Kun DUAN Yong 《High Technology Letters》 EI CAS 2022年第1期56-62,共7页
Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data... Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data so that both time and space complexities of the model are mitigated.Meanwhile,gradient boosting decision tree(GBDT)is used to train the target user profile prediction model.Based on the recommendation results,Bayesian optimization algorithm is applied to optimize the recommendation model,which can effectively improve the prediction accuracy.The experimental results show that the proposed algorithm can improve the accuracy of movie recommendation. 展开更多
关键词 gradient boosting decision tree(GBDT) recommendation algorithm manifold learn-ing ensemble learning Bayesian optimization
下载PDF
一种基于TVM的算子生成加速策略
9
作者 高伟 李帅龙 +3 位作者 茆琳 王磊 李颖颖 韩林 《计算机工程》 CAS CSCD 北大核心 2024年第8期353-362,共10页
随着人工智能(AI)的飞速发展,新算子和底层硬件层出不穷,这给算子库的开发和维护带来了巨大的工作量。单纯基于手工优化来解决AI模型的性能和效率很容易出现瓶颈。TVM深度学习编译器通过代码的自动化生成减轻了手工优化的负担,但同时也... 随着人工智能(AI)的飞速发展,新算子和底层硬件层出不穷,这给算子库的开发和维护带来了巨大的工作量。单纯基于手工优化来解决AI模型的性能和效率很容易出现瓶颈。TVM深度学习编译器通过代码的自动化生成减轻了手工优化的负担,但同时也存在搜索时间长的问题。为此,针对TVM的自动化代码生成框架Ansor,提出基于梯度提升算法的新代价模型和基于预定义规则的调度空间剪枝优化2种优化策略,旨在加速TVM的自动化代码生成过程,实现模型快速落地与部署,并进一步为人工智能技术的应用提供更高效的解决方案。实验结果表明,通过应用优化后代价模型可以在不损失推理时间的前提下,使得在x86 CPU平台上模型的调优时间减少30%~35%,同时优化后算子性能最高可提升22%,使得在深度计算单元(DCU)平台上模型的调优时间减少20%左右,同时优化后算子平均性能提升5.7%,此外,基于预定义规则的剪枝策略可以有效提升代价模型的收敛速度,并且在原有最佳迭代次数下,模型推理时间可提高7.4%。 展开更多
关键词 深度学习编译器 代价模型 梯度提升算法 剪枝策略 自动调优
下载PDF
小型无人有缆遥控水下机器人智能控制方法
10
作者 黄兆军 曾明如 《实验室研究与探索》 CAS 北大核心 2024年第7期34-38,53,共6页
针对深度确定性策略梯度(DDPG)算法应用于无人有缆遥控水下机器人(ROV)运动控制时存在的坏样本影响学习稳定性、缺少环境探索能力以及学习时间长难收敛等问题,从神经网络结构、噪声引入和融合监督学习3个方面对DDPG算法进行改进,并提出... 针对深度确定性策略梯度(DDPG)算法应用于无人有缆遥控水下机器人(ROV)运动控制时存在的坏样本影响学习稳定性、缺少环境探索能力以及学习时间长难收敛等问题,从神经网络结构、噪声引入和融合监督学习3个方面对DDPG算法进行改进,并提出了基于混合神经网络结构和参数噪声的监督式DDPG算法。仿真结果表明,监督式DDPG算法比常规DDPG算法和传统比例-积分-微分(PID)算法更加有效。 展开更多
关键词 深度确定性策略梯度算法 混合神经网络 参数噪声 监督学习 无人有缆遥控水下机器人 运动控制
下载PDF
铁路轨道工程物化阶段碳排放预测及影响因素研究
11
作者 鲍学英 韩通 霍雨雨 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4299-4310,共12页
在国家“双碳”战略目标下,铁路领域低碳转型势在必行。轨道工程作为铁路工程的重要组成部分,其物化阶段产生的碳排放是铁路工程碳排放的重要来源。为量化铁路轨道工程物化阶段碳排放,并实现智能化分析,建立铁路轨道工程物化阶段碳排放... 在国家“双碳”战略目标下,铁路领域低碳转型势在必行。轨道工程作为铁路工程的重要组成部分,其物化阶段产生的碳排放是铁路工程碳排放的重要来源。为量化铁路轨道工程物化阶段碳排放,并实现智能化分析,建立铁路轨道工程物化阶段碳排放计算模型,并提出一种基于机器学习算法的碳排放预测及影响因素分析模型。首先,界定物化阶段研究边界,分解铁路轨道工程,以主要工序为基本计算单元,采用碳排放因子法建立碳排放计算模型;其次,运用梯度提升树算法(Light Gradient Boosting Machine,LigtGBM)构建碳排放预测模型,并引入可解释机器学习模型(Shapley Addictive Explanation,SHAP)分析影响因素对碳排放量的贡献。以某西南山区铁路轨道工程为例,选取其中典型单元轨节计算碳排放量,结果显示1 km长度碳排放总量为1290.94 t,物化阶段中材料生产阶段碳排放占比最大,约为87.21%;分项工程中铺轨和铺道床的碳排放占比较高,分别为47.44%和46.44%。提取该轨道工程碳排放相关特征作为影响因素,对LigtGBM-SHAP模型进行验证,各项评估指标的数值表明模型具有较好的预测效果,影响因素重要度由大到小依次为轨道结构形式、线路地段、轨枕类型或轨道板、施工天数、区段坡度、区段运输距离,并在结果分析中通过单因素特征依赖图明晰各影响因素的分类变量或数值变化对碳排放量产生的影响。研究成果为铁路轨道工程碳排放计算、预测及分析提供了一个更加智能、全面的研究模型,为铁路工程建设进行碳减排工作提供参考。 展开更多
关键词 物化阶段 碳排放预测 影响因素 梯度提升树算法 可解释机器学习
下载PDF
慢性肾脏病合并心力衰竭诊断模型的建立及验证
12
作者 刘真意 姚瀚鑫 +2 位作者 宋媛媛 王晶莹 王莹 《检验医学与临床》 CAS 2024年第12期1714-1720,共7页
目的挖掘、分析慢性肾脏病(CKD)患者实验室检测数据,建立其合并心力衰竭的诊断模型,并评价模型的性能。方法采用横断面研究,选取2021年1月至2023年1月于吉林大学第一医院确诊为CKD的799例患者为研究对象,其中单纯CKD 341例、CKD合并心... 目的挖掘、分析慢性肾脏病(CKD)患者实验室检测数据,建立其合并心力衰竭的诊断模型,并评价模型的性能。方法采用横断面研究,选取2021年1月至2023年1月于吉林大学第一医院确诊为CKD的799例患者为研究对象,其中单纯CKD 341例、CKD合并心力衰竭458例。所有患者均进行血糖、肝功能、肾功能、血脂、血常规、心肌损伤标志物及其他指标检测,比较单纯CKD与CKD合并心力衰竭患者的一般资料及各实验室指标水平,排除P≥0.05的指标,再经Lasso回归筛选变量。采用5种机器模型算法,即极值梯度提升(XGBoost)、支持向量机(SVM)、随机森林(RF)、梯度提升机(GBM)和逻辑回归(LR)建立诊断模型,采用受试者工作特征(ROC)曲线筛选最优模型。应用ROC曲线、校准曲线和临床决策曲线评价模型的鉴别能力、拟合优度与临床价值,最后选取吉林大学中日联谊医院75例CKD患者检测结果进行外部验证。结果训练集XGBoost模型在预测CKD合并心力衰竭方面更高效,XGBoost模型的曲线下面积(AUC)明显高于RF、SVM、GBM、LR模型(Z=5.192、5.597、5.597、6.271,P<0.001),依据XGBoost模型确定CKD合并心力衰竭的6个重要性权重变量为尿酸、可溶性生长刺激表达基因2蛋白(ST2)、N末端B型利钠肽前体(NT-proBNP)、血糖(GLU)、γ-谷氨酰转移酶(γ-GGT)和年龄。在内部验证集中XGBoost模型的AUC为0.778,95%CI:0.705~0.850,区分度好。校准曲线显示,XGBoost模型预测有很好的拟合性。临床决策曲线显示XGBoost模型的净获益值较高,临床实用性强(P>0.05)。外部验证显示,XGBoost模型的AUC为0.959(95%CI:0.901~0.989),灵敏度为0.960。结论XGBoost算法建立的CKD合并心力衰竭诊断模型具有高效的诊断效能,能帮助临床医生早期识别、精准预测,为疾病诊断提供决策支持。 展开更多
关键词 心力衰竭 慢性肾脏病 机器模型 XGBoost算法 尿酸
下载PDF
基于多维度优先级经验回放机制的深度确定性策略梯度算法
13
作者 荣垂霆 李海军 +2 位作者 朱恒伟 刘延旭 于士军 《德州学院学报》 2024年第4期21-27,32,共8页
为进一步提高深度确定性策略梯度算法在处理强化学习连续动作任务中的收敛速度,提出了一种基于多维度优先级经验回放机制的深度确定性策略梯度算法。首先,针对经验回放机制中样本数据利用率低的问题,利用时间差分误差指标对样本进行分类... 为进一步提高深度确定性策略梯度算法在处理强化学习连续动作任务中的收敛速度,提出了一种基于多维度优先级经验回放机制的深度确定性策略梯度算法。首先,针对经验回放机制中样本数据利用率低的问题,利用时间差分误差指标对样本进行分类;其次,利用稀缺性和新奇性两个指标对样本进行评分,并将稀缺性和新奇性的评分进行加权组合,得到最终的优先级评分;最后,将设计的多维度优先级经验回放机制方法应用在深度确定性策略梯度算法中,在强化学习连续控制任务中对改进算法进行测试,实验结果表明,改进算法的收敛速度有所提升。 展开更多
关键词 深度确定性策略梯度算法 强化学习 经验回放机制 多维度优先级
下载PDF
基于无量纲模型的空地导弹强化学习制导律
14
作者 黄晓阳 周军 +2 位作者 赵斌 许新鹏 沈昱恒 《宇航学报》 EI CAS CSCD 北大核心 2024年第9期1445-1455,共11页
针对空地导弹对地打击的终端角度约束制导问题,提出了一种基于无量纲模型和终端奖励的强化学习末制导方法。首先,基于导弹飞行运动学方程建立了无量纲弹目相对运动模型,降低了强化学习环境状态空间和观测空间规模,有效提高了终端角度约... 针对空地导弹对地打击的终端角度约束制导问题,提出了一种基于无量纲模型和终端奖励的强化学习末制导方法。首先,基于导弹飞行运动学方程建立了无量纲弹目相对运动模型,降低了强化学习环境状态空间和观测空间规模,有效提高了终端角度约束制导的强化学习网络训练效率;其次,综合考虑终端命中精度和终端攻击角度精度,不依赖过程奖励函数,构建了基于终端奖励的强化学习策略,避免了传统强化学习制导过程中存在的奖励稀疏问题;第三,采用深度确定性策略梯度算法,在典型场景下完成了考虑输入优化的末制导律训练。数学仿真实验表明,所述方法相比现有方法具有更高的命中精度和攻击角度精度,显著降低需用过载,能够有效克服现有强化学习制导方法中存在的计算资源占用高、学习效率低的问题,充分体现了其潜在的应用价值。 展开更多
关键词 深度强化学习 无量纲模型 深度确定性策略梯度算法 终端奖励函数 攻击角度约束
下载PDF
基于深度强化学习CLPER-DDPG的车辆纵向速度规划
15
作者 柳鹏 赵克刚 +1 位作者 梁志豪 叶杰 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第5期702-710,共9页
为了解决车辆纵向速度规划任务中规划器不易收敛以及在多场景之间切换时稳定性差的问题,基于多层感知机设计了车辆纵向速度规划器,构建了结合优先经验回放机制和课程学习机制的深度确定性策略梯度算法。该文设计了仿真场景进行模型的训... 为了解决车辆纵向速度规划任务中规划器不易收敛以及在多场景之间切换时稳定性差的问题,基于多层感知机设计了车辆纵向速度规划器,构建了结合优先经验回放机制和课程学习机制的深度确定性策略梯度算法。该文设计了仿真场景进行模型的训练和测试,并对深度确定性策略梯度(DDPG)、结合优先经验回放机制的深度确定性策略梯度(PER-DDPG)、结合优先经验回放机制和课程学习机制的深度确定性策略梯度(CLPER-DDPG)3种算法进行对比实验,并在园区内的真实道路上进行实车实验。结果表明:相比于DDPG算法,CLPER-DDPG算法使规划器的收敛速度提高了56.45%,距离差均值降低了16.61%,速度差均值降低了15.25%,冲击度均值降低了18.96%。此外,当实验场景的环境气候和传感器硬件等参数发生改变时,模型能保证在安全的情况下完成纵向速度规划任务。 展开更多
关键词 自动驾驶 纵向速度规划 深度确定性策略梯度(DDPG)算法 课程学习机制 优先经验回放机制
下载PDF
基于ATMADDPG算法的多水面无人航行器编队导航
16
作者 王思琪 关巍 +1 位作者 佟敏 赵盛烨 《吉林大学学报(信息科学版)》 CAS 2024年第4期588-599,共12页
为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略... 为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略,并在实验阶段直接使用训练出的最佳策略得到最佳编队路径。仿真实验将4艘相同的“百川号”无人船作为实验对象。实验结果表明,基于ATMADDPG算法的队形保持策略能实现稳定的多无人船编队导航,并在一定程度上满足队形保持的要求。相较于多智能体深度确定性策略梯度(MADDPG:Multi-Agent Depth Deterministic Policy Gradient)算法,所提出的ATMADDPG算法在收敛速度、队形保持能力和对环境变化的适应性等方面表现出更优越的性能,综合导航效率可提高约80%,具有较大的应用潜力。 展开更多
关键词 多无人船编队导航 MADDPG算法 注意力机制 深度强化学习
下载PDF
自动驾驶路径优化的RF-DDPG车辆控制算法研究
17
作者 焦龙飞 谷志茹 +2 位作者 舒小华 袁鹏 王建斌 《湖南工业大学学报》 2024年第1期62-69,共8页
针对自动驾驶车辆在行使中对目标路径跟踪精度不高、鲁棒性能较差等问题,提出了一种深度确定性策略梯度RF-DDPG(reward function-deep deterministic policy gradient)路径跟踪算法。该算法是在深度强化学习DDPG的基础上,设计DDPG算法... 针对自动驾驶车辆在行使中对目标路径跟踪精度不高、鲁棒性能较差等问题,提出了一种深度确定性策略梯度RF-DDPG(reward function-deep deterministic policy gradient)路径跟踪算法。该算法是在深度强化学习DDPG的基础上,设计DDPG算法的奖励函数,以此优化DDPG的参数,达到所需跟踪精度及稳定性。并且采用aopllo自动驾驶仿真平台,对原始的DDPG算法和改进的RF-DDPG路径跟踪控制算法进行了仿真实验。研究结果表明,所提出的RF-DDPG算法在路径跟踪精度以及鲁棒性能等方面均优于DDPG算法。 展开更多
关键词 自动驾驶 路径跟踪 深度强化学习 路径控制 DDPG算法
下载PDF
基于扰动流体与TD3的无人机路径规划算法
18
作者 陈康雄 刘磊 《电光与控制》 CSCD 北大核心 2024年第1期57-62,共6页
针对双延迟深度确定性策略梯度(TD3)算法存在的动作选取随机性低的问题,在TD3算法中依正态分布进行动作选取,并依据扰动流体路径规划方法在路径平滑度上较高的优势,提出一种基于扰动流体与TD3算法的无人机路径规划框架,将其用于解决动... 针对双延迟深度确定性策略梯度(TD3)算法存在的动作选取随机性低的问题,在TD3算法中依正态分布进行动作选取,并依据扰动流体路径规划方法在路径平滑度上较高的优势,提出一种基于扰动流体与TD3算法的无人机路径规划框架,将其用于解决动态未知环境下的无人机路径规划问题,实现了无人机路径规划方案的快速收敛。仿真结果表明,对算法的改进可大幅提升网络训练效率,且能在保证避障实时性的前提下,满足航迹质量需求,为路径规划任务中应用深度强化学习提供了新思路。 展开更多
关键词 无人机 路径规划 双延迟深度确定性策略梯度算法 深度强化学习 扰动流体动态系统
下载PDF
D2D通信增强的蜂窝网络中基于DDPG的资源分配 被引量:1
19
作者 唐睿 庞川林 +2 位作者 张睿智 刘川 岳士博 《计算机应用》 CSCD 北大核心 2024年第5期1562-1569,共8页
针对终端直通(D2D)通信增强的蜂窝网络中存在的同频干扰,通过联合调控信道分配和功率控制最大化D2D链路和速率,并同时满足功率约束和蜂窝链路的服务质量(QoS)需求。为有效求解上述资源分配所对应的混合整数非凸规划问题,将原问题转化为... 针对终端直通(D2D)通信增强的蜂窝网络中存在的同频干扰,通过联合调控信道分配和功率控制最大化D2D链路和速率,并同时满足功率约束和蜂窝链路的服务质量(QoS)需求。为有效求解上述资源分配所对应的混合整数非凸规划问题,将原问题转化为马尔可夫决策过程,并提出一种基于深度确定性策略梯度(DDPG)算法的机制。通过离线训练,直接构建了从信道状态信息到最佳资源分配策略的映射关系,而且无需求解任何优化问题,因此可通过在线方式部署。仿真结果表明,相较于遍历搜索机制,所提机制在仅损失9.726%性能的情况下将运算时间降低了4个数量级(99.51%)。 展开更多
关键词 终端直通通信 资源分配 马尔可夫决策过程 深度强化学习 深度确定性策略梯度算法
下载PDF
基于改进DDPG-PID的芯片共晶键合温度控制
20
作者 刘家池 陈秀梅 邓娅莉 《半导体技术》 CAS 北大核心 2024年第11期973-980,共8页
芯片共晶键合对加热过程中的升温速率、保温时间和温度精度要求较高,在使用传统的比例-积分-微分(PID)温度控制方法时,存在响应时间过长、超调量过大、控制温度不够准确等问题。针对共晶加热台的温度控制问题,提出了一种基于改进的深度... 芯片共晶键合对加热过程中的升温速率、保温时间和温度精度要求较高,在使用传统的比例-积分-微分(PID)温度控制方法时,存在响应时间过长、超调量过大、控制温度不够准确等问题。针对共晶加热台的温度控制问题,提出了一种基于改进的深度确定性策略梯度(DDPG)强化学习算法优化PID参数的控制方法,采用分类经验回放的思想,以奖励值大小为标准对经验进行分类存放,根据智能体当前的状态和下一步动作,从相应的经验池中进行采样并训练,并根据PID控制算法的特性设计了合理的奖励函数,改善了强化学习中奖励稀疏的问题,提高了算法的收敛速度与性能。仿真结果表明,与传统PID控制、常规DDPG-PID控制相比,改进DDPG-PID控制缩短了响应时间,降低了超调量,近乎消除了稳态误差,提高了控制性能和系统稳定性。 展开更多
关键词 芯片共晶键合 深度确定性策略梯度(DDPG)算法 强化学习 温度控制 比例-积分-微分(PID)控制
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部