The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin...With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.展开更多
The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochast...The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations.展开更多
The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the ...The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on.展开更多
This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and ut...This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and utilises the modified conjugate gradient method to perform sample-by-sample updating of the filter weights more efficiently. Simulation results illustrated that the proposed algorithm has the ability to provide a fast convergence speed and lower steady-error compared to that of traditional least mean square algorithm (LMSA), normalized transform domain least mean square algorithm (NT- LMSA), Quasi-Newton least mean square algorithm (Q-LMSA) and time domain conjugate gradient algorithm (TD-CGA) when the input signal is heavily coloured.展开更多
This work describes a novel adaptive matrix/vector gradient (AMVG) algorithm for design of IIR filters and ARMA signal models. The AMVG algorithm can track to IIR filters and ARMA systems having poles also outside the...This work describes a novel adaptive matrix/vector gradient (AMVG) algorithm for design of IIR filters and ARMA signal models. The AMVG algorithm can track to IIR filters and ARMA systems having poles also outside the unit circle. The time reversed filtering procedure was used to treat the unstable conditions. The SVD-based null space solution was used for the initialization of the AMVG algorithm. We demonstrate the feasibility of the method by designing a digital phase shifter, which adapts to complex frequency carriers in the presence of noise. We implement the half-sample delay filter and describe the envelope detector based on the Hilbert transform filter.展开更多
In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on p...In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on projection on the Hankel tensor set.Moreover,due to the special properties of Hankel structure,using the fast singular value thresholding operator of the mode-s unfolding of a Hankel tensor can decrease the computational cost.Meanwhile,the convergence of the new algorithm is discussed under some reasonable conditions.Finally,the numerical experiments show the effectiveness of the proposed algorithm.展开更多
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu...Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.展开更多
Many machine learning problems can be formulated as minimizing the sum of a function and a non-smooth regularization term.Proximal stochastic gradient methods are popular for solving such composite optimization proble...Many machine learning problems can be formulated as minimizing the sum of a function and a non-smooth regularization term.Proximal stochastic gradient methods are popular for solving such composite optimization problems.We propose a minibatch proximal stochastic recursive gradient algorithm SRG-DBB,which incorporates the diagonal Barzilai–Borwein(DBB)stepsize strategy to capture the local geometry of the problem.The linear convergence and complexity of SRG-DBB are analyzed for strongly convex functions.We further establish the linear convergence of SRGDBB under the non-strong convexity condition.Moreover,it is proved that SRG-DBB converges sublinearly in the convex case.Numerical experiments on standard data sets indicate that the performance of SRG-DBB is better than or comparable to the proximal stochastic recursive gradient algorithm with best-tuned scalar stepsizes or BB stepsizes.Furthermore,SRG-DBB is superior to some advanced mini-batch proximal stochastic gradient methods.展开更多
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej...With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.展开更多
A new algorithm, called the adaptive exponent smoothing gradient algorithm (AESGA), is developed from Widrow′s LMS algorithm. It is based on the fact that LMS algorithm has properties of time delaying and low pass ...A new algorithm, called the adaptive exponent smoothing gradient algorithm (AESGA), is developed from Widrow′s LMS algorithm. It is based on the fact that LMS algorithm has properties of time delaying and low pass filtering. This paper shows that the algorithm, on the domain of {Ω 1:α∈(0,1)}×{Ω 2:β(0,∞)} , unbiasedly and asymptotically converges to the Winner solution when the signal is a stationary Gauss stochastic process. The convergent property and the performance misadjustment are analyzed in theory. And calculation method of the algorithm is also suggested. Numerical results given by computer simulations show that the algorithm is effective.展开更多
Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lan...Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.展开更多
The stochastic gradient (SG) algorithm has less of a computational burden than the least squares algorithms, but it can not track time varying parameters and has a poor convergence rate. In order to improve the track...The stochastic gradient (SG) algorithm has less of a computational burden than the least squares algorithms, but it can not track time varying parameters and has a poor convergence rate. In order to improve the tracking properties of the SG algorithm, the forgetting gradient (FG) algorithm is presented, and its convergence is analyzed by using the martingale hyperconvergence theorem. The results show that: (1) for time invariant deterministic systems, the parameter estimates given by the FG algorithm converge consistently to their true values; (2) for stochastic time varying systems, the parameter tracking error is bounded, that is, the parameter tracking error is small when both the parameter change rate and the observation noise are small.展开更多
The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous contr...The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous control problems, which can learn an effective control policy with an unknown system model. However, it is often affected by the high sample complexity and requires huge amounts of data to train, which limits its effectiveness in soft arm control. An improved policy gradient method, policy gradient integrating long and short-term rewards denoted as PGLS, is proposed in this paper to overcome this issue. The shortterm rewards provide more dynamic-aware exploration directions for policy learning and improve the exploration efficiency of the algorithm. PGLS can be integrated into current policy gradient algorithms, such as deep deterministic policy gradient(DDPG). The overall control framework is realized and demonstrated in a dynamics simulation environment. Simulation results show that this approach can effectively control the soft arm to reach and track the targets. Compared with DDPG and other model-free reinforcement learning algorithms, the proposed PGLS algorithm has a great improvement in convergence speed and performance. In addition, a fluid-driven soft manipulator is designed and fabricated in this paper, which can verify the proposed PGLS algorithm in real experiments in the future.展开更多
By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point...By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point problems.Convergence properties of the proposed algorithms are ensured based on weak assumptions,where none of the objective functions are assumed to be strongly convex but the step-sizes in the primal-dual updates are more flexible than the pre-vious.By making use of variational analysis,the global convergence and sublinear convergence rate in the ergodic/nonergodic sense are established,and the numer-ical efficiency of our algorithms is verified by testing an image deblurring problem compared with several existing algorithms.展开更多
A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as...A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as the objective function. Moreover, a gradient descent algorithm based on the classical Euclidean distance is provided to compare with this natural gradient descent algorithm. Furthermore, the behaviors of two proposed algorithms and the conventional modified conjugate gradient algorithm are compared and demonstrated by two simulation examples. By comparison, it is shown that the convergence speed of the natural gradient descent algorithm is faster than both of the gradient descent algorithm and the conventional modified conjugate gradient algorithm in solving the Lyapunov equation.展开更多
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi...In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.展开更多
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltage...Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.展开更多
A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and...A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.展开更多
A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synth...A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.展开更多
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金the Sub-project of National Science and Technology Major Project of China(No.2016ZX05027-002-003)the National Natural Science Foundation of China(No.41404089)+1 种基金the State Key Program of National Natural Science of China(No.41430322)the National Basic Research Program of China(973 Program)(No.2015CB45300)
文摘With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
基金National Natural Science Foundation of China(Nos.4156108241161061)。
文摘The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations.
基金supported by Hunan Education Office Foundation under Grant 06C260
文摘The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on.
文摘This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and utilises the modified conjugate gradient method to perform sample-by-sample updating of the filter weights more efficiently. Simulation results illustrated that the proposed algorithm has the ability to provide a fast convergence speed and lower steady-error compared to that of traditional least mean square algorithm (LMSA), normalized transform domain least mean square algorithm (NT- LMSA), Quasi-Newton least mean square algorithm (Q-LMSA) and time domain conjugate gradient algorithm (TD-CGA) when the input signal is heavily coloured.
文摘This work describes a novel adaptive matrix/vector gradient (AMVG) algorithm for design of IIR filters and ARMA signal models. The AMVG algorithm can track to IIR filters and ARMA systems having poles also outside the unit circle. The time reversed filtering procedure was used to treat the unstable conditions. The SVD-based null space solution was used for the initialization of the AMVG algorithm. We demonstrate the feasibility of the method by designing a digital phase shifter, which adapts to complex frequency carriers in the presence of noise. We implement the half-sample delay filter and describe the envelope detector based on the Hilbert transform filter.
文摘In this paper,an accelerated proximal gradient algorithm is proposed for Hankel tensor completion problems.In our method,the iterative completion tensors generated by the new algorithm keep Hankel structure based on projection on the Hankel tensor set.Moreover,due to the special properties of Hankel structure,using the fast singular value thresholding operator of the mode-s unfolding of a Hankel tensor can decrease the computational cost.Meanwhile,the convergence of the new algorithm is discussed under some reasonable conditions.Finally,the numerical experiments show the effectiveness of the proposed algorithm.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant No.(G:651-135-1443).
文摘Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.
基金the National Natural Science Foundation of China(Nos.11671116,11701137,12071108,11991020,11991021 and 12021001)the Major Research Plan of the NSFC(No.91630202)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA27000000)the Natural Science Foundation of Hebei Province(No.A2021202010)。
文摘Many machine learning problems can be formulated as minimizing the sum of a function and a non-smooth regularization term.Proximal stochastic gradient methods are popular for solving such composite optimization problems.We propose a minibatch proximal stochastic recursive gradient algorithm SRG-DBB,which incorporates the diagonal Barzilai–Borwein(DBB)stepsize strategy to capture the local geometry of the problem.The linear convergence and complexity of SRG-DBB are analyzed for strongly convex functions.We further establish the linear convergence of SRGDBB under the non-strong convexity condition.Moreover,it is proved that SRG-DBB converges sublinearly in the convex case.Numerical experiments on standard data sets indicate that the performance of SRG-DBB is better than or comparable to the proximal stochastic recursive gradient algorithm with best-tuned scalar stepsizes or BB stepsizes.Furthermore,SRG-DBB is superior to some advanced mini-batch proximal stochastic gradient methods.
基金the 2021 Key Project of Natural Science and Technology of Yangzhou Polytechnic Institute,Active Disturbance Rejection and Fault-Tolerant Control of Multi-Rotor Plant ProtectionUAV Based on QBall-X4(Grant Number 2021xjzk002).
文摘With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.
文摘A new algorithm, called the adaptive exponent smoothing gradient algorithm (AESGA), is developed from Widrow′s LMS algorithm. It is based on the fact that LMS algorithm has properties of time delaying and low pass filtering. This paper shows that the algorithm, on the domain of {Ω 1:α∈(0,1)}×{Ω 2:β(0,∞)} , unbiasedly and asymptotically converges to the Winner solution when the signal is a stationary Gauss stochastic process. The convergent property and the performance misadjustment are analyzed in theory. And calculation method of the algorithm is also suggested. Numerical results given by computer simulations show that the algorithm is effective.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506003)
文摘Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.
基金the National Natural Science Foundationof China!( No.6993 4 0 10)
文摘The stochastic gradient (SG) algorithm has less of a computational burden than the least squares algorithms, but it can not track time varying parameters and has a poor convergence rate. In order to improve the tracking properties of the SG algorithm, the forgetting gradient (FG) algorithm is presented, and its convergence is analyzed by using the martingale hyperconvergence theorem. The results show that: (1) for time invariant deterministic systems, the parameter estimates given by the FG algorithm converge consistently to their true values; (2) for stochastic time varying systems, the parameter tracking error is bounded, that is, the parameter tracking error is small when both the parameter change rate and the observation noise are small.
基金partially supported by the National Key Research and Development Project Monitoring and Prevention of Major Natural Disasters Special Program (Grant No. 2020YFC1512202)the Anhui University Cooperative Innovation Project (Grant No. GXXT-2019-003)
文摘The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous control problems, which can learn an effective control policy with an unknown system model. However, it is often affected by the high sample complexity and requires huge amounts of data to train, which limits its effectiveness in soft arm control. An improved policy gradient method, policy gradient integrating long and short-term rewards denoted as PGLS, is proposed in this paper to overcome this issue. The shortterm rewards provide more dynamic-aware exploration directions for policy learning and improve the exploration efficiency of the algorithm. PGLS can be integrated into current policy gradient algorithms, such as deep deterministic policy gradient(DDPG). The overall control framework is realized and demonstrated in a dynamics simulation environment. Simulation results show that this approach can effectively control the soft arm to reach and track the targets. Compared with DDPG and other model-free reinforcement learning algorithms, the proposed PGLS algorithm has a great improvement in convergence speed and performance. In addition, a fluid-driven soft manipulator is designed and fabricated in this paper, which can verify the proposed PGLS algorithm in real experiments in the future.
基金The work is partly supported by the NSF of China(No.11671318)the NSF of Fujian province(No.2016J01028).
文摘By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point problems.Convergence properties of the proposed algorithms are ensured based on weak assumptions,where none of the objective functions are assumed to be strongly convex but the step-sizes in the primal-dual updates are more flexible than the pre-vious.By making use of variational analysis,the global convergence and sublinear convergence rate in the ergodic/nonergodic sense are established,and the numer-ical efficiency of our algorithms is verified by testing an image deblurring problem compared with several existing algorithms.
文摘A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as the objective function. Moreover, a gradient descent algorithm based on the classical Euclidean distance is provided to compare with this natural gradient descent algorithm. Furthermore, the behaviors of two proposed algorithms and the conventional modified conjugate gradient algorithm are compared and demonstrated by two simulation examples. By comparison, it is shown that the convergence speed of the natural gradient descent algorithm is faster than both of the gradient descent algorithm and the conventional modified conjugate gradient algorithm in solving the Lyapunov equation.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074), and the Special Funds for Major Specialities of Shanghai Education Commission (Grant No.J50101)
文摘In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.
基金supported by the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)the National Natural Science Foundation of China(Grant No.11173008)the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program,China(Grant No.2012JQ0012)
文摘Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.
基金supported by the Fundamental Research Funds for the Central Universities(No.56XAA17075)
文摘A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.
基金the National Natural Science Foundation of China (60502045).
文摘A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.