针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用...针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。展开更多
深度学习技术可显著提高军事作战中坦克目标识别的准确率和速度,减少误判和漏检,从而降低人员伤亡和战争损失。为了解决大型、复杂、耗时的模型可能会受限于计算资源、存储和能耗等方面的问题,提出了一种基于YOLOv5轻量化目标检测器。通...深度学习技术可显著提高军事作战中坦克目标识别的准确率和速度,减少误判和漏检,从而降低人员伤亡和战争损失。为了解决大型、复杂、耗时的模型可能会受限于计算资源、存储和能耗等方面的问题,提出了一种基于YOLOv5轻量化目标检测器。通过C2f based on attention mechanism模块丰富梯度流信息并进一步加速运算;Lead Head与Aux Head的有机结合平衡正负样本提高模型对遮挡小坦克目标识别漏检的能力;利用FasterNet作为特征提取网络,解决了参数量大、算力要求高的问题。实验结果表明:相较于原始YOLOv5,改进后的模型Map0.5、mAP0.5:0.95分别提高了1.2%和4.2%,参数量、GFLOPs以及Best.pt分别降低了32.3%、27.59%和26.01%。改进后的YOLOv5模型可以非常快速精准识别坦克目标,通过模型的轻量化使其更容易在移动端和嵌入式设备上部署。展开更多
针对传统电流梯度更新的无参数预测电流控制(parameter-free predictive current control,PFPCC)存在电流梯度更新停滞及电流脉动大的问题,提出一种基于离散空间矢量调制(discrete space vector modulation,DSVM)的PFPCC优化方法。首先...针对传统电流梯度更新的无参数预测电流控制(parameter-free predictive current control,PFPCC)存在电流梯度更新停滞及电流脉动大的问题,提出一种基于离散空间矢量调制(discrete space vector modulation,DSVM)的PFPCC优化方法。首先,通过分析不同电压矢量在α-β轴上的电流梯度关系,得到相邻两个控制周期内各电压矢量与电流梯度的数学关系;然后,在一个控制周期内更新所有电压矢量的电流梯度,有效减小了传统PFPCC中的停滞效应。为了进一步减小电流脉动,将DSVM引入到所提方法中。结合DSVM选矢量的方式,以较小计算量即可将所有的电流梯度更新,从而保证电流预测的可靠性和准确性。实验结果表明:所提PFPCC方法与基于模型的预测电流控制相比,具有类似的动静态性能。与单矢量PFPCC相比,DSVM-PFPCC方法在保证动静态性能的同时,能够显著减小电流脉动,提高在实际系统中的控制性能。展开更多
The geotemperature gradient is considered as taking main part in generating the Earth’s magnetic field. It is shown that geotemperature gradient functions as a generator of both nuclear and mantle thermoelectrical cu...The geotemperature gradient is considered as taking main part in generating the Earth’s magnetic field. It is shown that geotemperature gradient functions as a generator of both nuclear and mantle thermoelectrical currents thanks to the great temperature difference between the core and the mantle. The movement of those currents is close to the radial direction towards the Earth’s crust. However, the nuclear thermocurrents movement tends to cyclically change into opposite one. If the mantle and core thermocurrents move oppositely, the Earth’s crust cools down globally and ice age comes, but if they move unidirectionally then global warming comes. The calculation show that the Earth’s surface can warm up to not more than 10°C. The latter, considering how human factor affects the warming of Earth, is incomparably great. There are calculations that show power of the Earth’s thermocurrents being enough to generate and maintain the Earth’s magnetic field, its modern dynamics and the poles inversion.展开更多
Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current(SCSWC) in the northern South China Sea(NSCS) during winter monsoon relaxation. The model reproduce...Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current(SCSWC) in the northern South China Sea(NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea(SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.展开更多
Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy...Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed.展开更多
文摘针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。
文摘深度学习技术可显著提高军事作战中坦克目标识别的准确率和速度,减少误判和漏检,从而降低人员伤亡和战争损失。为了解决大型、复杂、耗时的模型可能会受限于计算资源、存储和能耗等方面的问题,提出了一种基于YOLOv5轻量化目标检测器。通过C2f based on attention mechanism模块丰富梯度流信息并进一步加速运算;Lead Head与Aux Head的有机结合平衡正负样本提高模型对遮挡小坦克目标识别漏检的能力;利用FasterNet作为特征提取网络,解决了参数量大、算力要求高的问题。实验结果表明:相较于原始YOLOv5,改进后的模型Map0.5、mAP0.5:0.95分别提高了1.2%和4.2%,参数量、GFLOPs以及Best.pt分别降低了32.3%、27.59%和26.01%。改进后的YOLOv5模型可以非常快速精准识别坦克目标,通过模型的轻量化使其更容易在移动端和嵌入式设备上部署。
文摘针对传统电流梯度更新的无参数预测电流控制(parameter-free predictive current control,PFPCC)存在电流梯度更新停滞及电流脉动大的问题,提出一种基于离散空间矢量调制(discrete space vector modulation,DSVM)的PFPCC优化方法。首先,通过分析不同电压矢量在α-β轴上的电流梯度关系,得到相邻两个控制周期内各电压矢量与电流梯度的数学关系;然后,在一个控制周期内更新所有电压矢量的电流梯度,有效减小了传统PFPCC中的停滞效应。为了进一步减小电流脉动,将DSVM引入到所提方法中。结合DSVM选矢量的方式,以较小计算量即可将所有的电流梯度更新,从而保证电流预测的可靠性和准确性。实验结果表明:所提PFPCC方法与基于模型的预测电流控制相比,具有类似的动静态性能。与单矢量PFPCC相比,DSVM-PFPCC方法在保证动静态性能的同时,能够显著减小电流脉动,提高在实际系统中的控制性能。
文摘The geotemperature gradient is considered as taking main part in generating the Earth’s magnetic field. It is shown that geotemperature gradient functions as a generator of both nuclear and mantle thermoelectrical currents thanks to the great temperature difference between the core and the mantle. The movement of those currents is close to the radial direction towards the Earth’s crust. However, the nuclear thermocurrents movement tends to cyclically change into opposite one. If the mantle and core thermocurrents move oppositely, the Earth’s crust cools down globally and ice age comes, but if they move unidirectionally then global warming comes. The calculation show that the Earth’s surface can warm up to not more than 10°C. The latter, considering how human factor affects the warming of Earth, is incomparably great. There are calculations that show power of the Earth’s thermocurrents being enough to generate and maintain the Earth’s magnetic field, its modern dynamics and the poles inversion.
基金Supported by the National Natural Science Foundation of China(Nos.41606005,41430963)the National Science Foundation for Post-Doctoral Scientists of China(No.2015M582133)the Fundamental Research Funds for the Central Universities(No.201713023)
文摘Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current(SCSWC) in the northern South China Sea(NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea(SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.
基金supported by the National Natural Science Foundation of China(Grants No.51079072 and 51279088)the National High Technology Research and Development Program of China(Grant No.2012AA052602)the Tsinghua University Initiative Scientific Research Program(Grant No.20101081791)
文摘Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed.