期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Impacts of multi-foulings on salinity gradient energy conversion process in negatively charged conical nanochannels
1
作者 MAO RuiJie CHEN Xi +3 位作者 ZHOU RuHong LONG Rui LIU ZhiChun LIU Wei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1714-1726,共13页
Membrane fouling inevitably occurs during nanofluidic reverse electrodialysis.Herein,the impact of multi-fouling on the energy conversion performance of negatively charged conical nanochannels under asymmetrical confi... Membrane fouling inevitably occurs during nanofluidic reverse electrodialysis.Herein,the impact of multi-fouling on the energy conversion performance of negatively charged conical nanochannels under asymmetrical configurations is systematically investigated.The results reveal that in Configuration I,where a high-concentration solution is applied at the tip side,at small concentration ratios,multiple foulings reduce the electric power.In Configuration II,where a low-concentration solution is applied at the tip side,multiple foulings near the base side contribute to the electric power.Any fouling that formed near the lowconcentration entrance diminished the electric power and energy conversion efficiency.Multi-fouling lowered the electrical power consumption by 69.27%and 99.94%in Configurations I and II,respectively.In Configuration I,the electric power first increased with increasing fouling surface charge density,reached its maximum value,and thereafter decreased.In Configuration II,the electric power first decreased with increasing fouling surface charge density,reached its minimum value,and thereafter increased.Large negative or positive charge densities of fouling contribute to the electric power and energy conversion efficiency. 展开更多
关键词 conical nanochannel FOULING nanofluidic reverse electrodialysis salinity gradient energy
原文传递
Temperature difference-enhanced salinity gradient energy conversion enabled by thermostable hydrogel membrane with anti-swelling property
2
作者 Zhehua Zhang Teng Zhou +10 位作者 Xiang-Yu Kong Yadong Wu Weiwen Xin Yanglansen Cui Linsen Yang Tingyang Li Xin Li Qingchen Wang Weipeng Chen Lei Jiang Liping Wen 《Nano Research》 SCIE EI CSCD 2023年第8期11288-11295,共8页
Coupling low-grade heat(LGH)with salinity gradient is an effective approach to increase the efficiency of the nanofluidic-membrane-based power generator.However,it is a challenge to fabricate membranes with high charg... Coupling low-grade heat(LGH)with salinity gradient is an effective approach to increase the efficiency of the nanofluidic-membrane-based power generator.However,it is a challenge to fabricate membranes with high charge density that ensures ion permselectivity,while maintaining chemical and mechanical stability in this composite environment.Here,we develop a bis[2-(methacryloyloxy)ethyl]phosphate(BMAP)hydrogel membrane with good thermal stability and anti-swelling property through self-crosslinking of the selected monomer.By taking advantage of negative space charge and three-dimensional(3D)interconnected nanochannels,salinity gradient energy conversion efficiency is substantially enhanced by temperature difference.Theoretical and experimental results verify that LGH can largely weaken the concentration polarization,promoting transmembrane ion transport.As a result,such a hydrogel membrane delivers high-performance energy conversion with a power density of 11.53 W·m^(−2)under a negative temperature difference(NTD),showing a 193%increase compared with that without NTD. 展开更多
关键词 ion transport temperature difference-enhanced salinity gradient energy self-crosslinking hydrogel membranes space charge
原文传递
Maximum power and corresponding efficiency of an irreversible blue heat engine for harnessing waste heat and salinity gradient energy 被引量:2
3
作者 LIN Jian XIE Shan +3 位作者 JIANG ChenXing SUN YiFei CHEN JinCan ZHAO YingRu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第3期646-656,共11页
In this study,a novel irreversible cyclic model of a capacitive mixing blue heat engine mainly consisting of super capacitors,charging and discharging circuits,a heat source,as well as two water sources with given sal... In this study,a novel irreversible cyclic model of a capacitive mixing blue heat engine mainly consisting of super capacitors,charging and discharging circuits,a heat source,as well as two water sources with given salt concentrations is established for harvesting salinity gradient energy and waste heat.Additionally,the effects of the charging voltage and ratio of the minimum to maximum surface electric charge density on the thermodynamic efficiency and power output of the cycle are discussed.The maximum power output of the cycle is calculated.The optimized ranges of efficiency and power output as well as the temperatures of two isothermal processes are determined.It is established that during the isoelectric quantity process,there is not only an increase in thermal voltage owing to the temperature difference,but also an increase in concentration voltage owing to the salinity gradient.Consequently,the blue heat engine can obtain higher energy conversion efficiency than a conventional heat engine.When the temperature ratio of the heat source to the heat sink is 1.233,the maximum efficiency can reach approximately36%.The results obtained can promote the application of capacitive mixing technology in real life,reducing the consumption of fossil fuels. 展开更多
关键词 blue heat engine capacitance mixing salinity gradient energy thermodynamic analysis efficiency at maximum power output
原文传递
Experimentation of a Membrane-based Concentration Gradient Energy Storage of Liquid Desiccant Solutions Driven by Solar Energy
4
作者 WANG Zanshe LI Ran +2 位作者 YIN Fangting WU Yue GU Zhaolin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第5期1503-1512,共10页
Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar ... Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar energy supply.Traditional thermal energy storage mode cannot achieve long-term storage due to the heat loss even under the excellent thermal insulation measures.In this work,a solar-powered membrane-based concentration gradient energy storage of liquid desiccant solutions is presented.In the membrane distillation process driven by solar energy under the right solar radiation conditions,the liquid desiccant solution is concentrated gradually and long-term stored as the concentration gradient energy.To this end,the measured temperature of solar hot water is in the range of 40°C to 90°C from May to September,2018,in Xi’an,China.And then,the LiBr solution(50 wt%),the LiCl solution(35 wt%),and the CaCl_(2)solution(40 wt%)were membrane-based concentrated in the temperature range of 42°C to 63°C,separately.The results showed that the water vapor pressure difference decides the water vapor transferred across the membrane pores from the liquid desiccant side to the air side.The energy storage density of liquid desiccant solutions increases along with the increases in temperature and the membrane area.Consequently,when the LiBr,LiCl,and CaCl_(2)solutions are concentrated from 50%to 55%,from 35%to 40%,and from 40%to 45%,separately,the concentration energy storage density is 245 kJ/kg,350 kJ/kg,and 306 kJ/kg,which is equivalent to or even higher than ice storage capacity.Due to the two independent closed cycle of the liquid desiccant solution and air,the liquid desiccant solution’s concentration gradient energy storage can be long-term stored environment-friendly without any insulation measures. 展开更多
关键词 solar energy membrane concentration concentration gradient energy energy storage liquid desiccant
原文传递
Viability of Harvesting Salinity Gradient (Blue) Energy by Nanopore-Based Osmotic Power Generation
5
作者 Zhangxin Wang Li Wang Menachem Elimelech 《Engineering》 SCIE EI 2022年第2期51-60,共10页
The development of novel materials with ion-selective nanochannels has introduced a new technology for harvesting salinity gradient(blue)energy,namely nanopore power generators(NPGs).In this study,we perform a compreh... The development of novel materials with ion-selective nanochannels has introduced a new technology for harvesting salinity gradient(blue)energy,namely nanopore power generators(NPGs).In this study,we perform a comprehensive analysis of the practical performance of NPG in both coupon-size and module-scale operations.We show that although NPG membrane coupons can theoretically generate ultrahigh power density under ideal conditions,the resulting power density in practical operations at a coupon scale can hardly reach 10 W·m^(-2) due to concentration polarization effects.For module-scale NPG operation,we estimate both the power density and specific extractable energy(i.e.,extractable energy normalized by the total volume of the working solutions),and elucidate the impact of operating conditions on these two metrics based on the interplay between concentration polarization and extent of mixing of the high-and low-concentration solutions.Further,we develop a modeling framework to assess the viability of an NPG system.Our results demonstrate that,for NPG systems working with seawater and river water,the gross specific extractable energy by the NPG system is very low(~0.1 kW?h?m?3)and is further compromised by the parasitic energy consumptions in the system(notably,pumping of the seawater and river water solutions and their pretreatment).Overall,NPG systems produce very low net specific extractable energy(<0.025 kW?h?m?3)and net power density(<0.1 W?m?2).Our study highlights the significant practical limitations in NPG operations,casting doubt on the viability of NPG as a technology for blue energy harvesting. 展开更多
关键词 Nanopore power generator Salinity gradient(blue)energy Power density Specific extractable energy
下载PDF
Marine renewable energy in China: Current status and perspectives 被引量:7
6
作者 Yong-liang ZHANG Zheng LIN Qiu-lin LIU 《Water Science and Engineering》 EI CAS CSCD 2014年第3期288-305,共18页
Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy... Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed. 展开更多
关键词 renewable energy tidal energy tidal current energy wave energy ocean thermalenergy salinity gradient energy
下载PDF
Paleotectonic residual strain energy in Southwest China
7
作者 An Ou 《Geodesy and Geodynamics》 2015年第1期25-33,共9页
Based on the orthotropic elastic theory of rock masses, the X-ray method was used to measure the distribution of macro-residual strain energy density along a depth profile,using core samples taken from 47 large-apertu... Based on the orthotropic elastic theory of rock masses, the X-ray method was used to measure the distribution of macro-residual strain energy density along a depth profile,using core samples taken from 47 large-aperture deep boreholes in four regions of Southwest China: the Longmenshan, Anninghe, Honghe, and Xianshuihe fault zones.Then, the vertical gradients of the macro-residual strain energy density and the macroresidual strain energy contained in high-energy cuboid block segments along each fault zone were determined. The results demonstrate that the macro-residual strain energy stored at shallow levels in the rock mass in these fault zones may be partly responsible for generating many large earthquakes and may explain why the large earthquakes in this region are typically shallow. 展开更多
关键词 Southwest China X-ray method Vertical energy gradient Fault zone energy Paleotectonics Residual strain energy Strain energy dens
下载PDF
An Efficient Detection Approach of Content Aware Image Resizing 被引量:2
8
作者 Ming Lu Shaozhang Niu Zhenguang Gao 《Computers, Materials & Continua》 SCIE EI 2020年第8期887-907,共21页
Content aware image resizing(CAIR)is an excellent technology used widely for image retarget.It can also be used to tamper with images and bring the trust crisis of image content to the public.Once an image is processe... Content aware image resizing(CAIR)is an excellent technology used widely for image retarget.It can also be used to tamper with images and bring the trust crisis of image content to the public.Once an image is processed by CAIR,the correlation of local neighborhood pixels will be destructive.Although local binary patterns(LBP)can effectively describe the local texture,it however cannot describe the magnitude information of local neighborhood pixels and is also vulnerable to noise.Therefore,to deal with the detection of CAIR,a novel forensic method based on improved local ternary patterns(ILTP)feature and gradient energy feature(GEF)is proposed in this paper.Firstly,the adaptive threshold of the original local ternary patterns(LTP)operator is improved,and the ILTP operator is used to describe the change of correlation among local neighborhood pixels caused by CAIR.Secondly,the histogram features of ILTP and the gradient energy features are extracted from the candidate image for CAIR forgery detection.Then,the ILTP features and the gradient energy features are concatenated into the combined features,and the combined features are used to train classifier.Finally support vector machine(SVM)is exploited as a classifier to be trained and tested by the above features in order to distinguish whether an image is subjected to CAIR or not.The candidate images are extracted from uncompressed color image database(UCID),then the training and testing sets are created.The experimental results with many test images show that the proposed method can detect CAIR tampering effectively,and that its performance is improved compared with other methods.It can achieve a better performance than the state-of-the-art approaches. 展开更多
关键词 Digital image forensics content aware image resizing local ternary patterns gradient energy feature
下载PDF
Investigation of Turbulent Transition in Plane Couette Flows Using Energy Gradient Method 被引量:5
9
作者 Hua-Shu Dou Boo Cheong Khoo 《Advances in Applied Mathematics and Mechanics》 SCIE 2011年第2期165-180,共16页
The energy gradient method has been proposed with the aim of better understanding the mechanism of flow transition from laminar flow to turbulent flow.In this method,it is demonstrated that the transition to turbulenc... The energy gradient method has been proposed with the aim of better understanding the mechanism of flow transition from laminar flow to turbulent flow.In this method,it is demonstrated that the transition to turbulence depends on the relative magnitudes of the transverse gradient of the total mechanical energy which amplifies the disturbance and the energy loss from viscous friction which damps the disturbance,for given imposed disturbance.For a given flow geometry and fluid properties,when the maximum of the function K(a function standing for the ratio of the gradient of total mechanical energy in the transverse direction to the rate of energy loss due to viscous friction in the streamwise direction)in the flow field is larger than a certain critical value,it is expected that instability would occur for some initial disturbances.In this paper,using the energy gradient analysis,the equation for calculating the energy gradient function K for plane Couette flow is derived.The result indicates that K reaches the maximum at the moving walls.Thus,the fluid layer near the moving wall is the most dangerous position to generate initial oscillation at sufficient high Re for given same level of normalized perturbation in the domain.The critical value of K at turbulent transition,which is observed from experiments,is about 370 for plane Couette flow when two walls move in opposite directions(anti-symmetry).This value is about the same as that for plane Poiseuille flow and pipe Poiseuille flow(385-389).Therefore,it is concluded that the critical value of K at turbulent transition is about 370-389 for wall-bounded parallel shear flows which include both pressure(symmetrical case)and shear driven flows(anti-symmetrical case). 展开更多
关键词 Flow instability turbulent transition plane Couette flow energy gradient energy loss critical condition
原文传递
Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water 被引量:1
10
作者 Mourin Jarin Zeou Dou +2 位作者 Haiping Gao Yongsheng Chen Xing Xie 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第2期19-28,共10页
Two-thirds of the world’s population has limited access to potable water.As we continue to use up our freshwater resources,new and improved techniques for potable water production are warranted.Here,we present a gene... Two-thirds of the world’s population has limited access to potable water.As we continue to use up our freshwater resources,new and improved techniques for potable water production are warranted.Here,we present a general concept called“salinity exchange”that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch,thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source.We have demonstrated this process using electrodialysis.Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions.Laboratory-scale salinity exchange electrodialysis(SEE)systems can produce high-quality desalinated water at~1 mL/min with an energy consumption less than 1 kWh/m3.SEE has also been operated using real water,and the challenges of its implementation at a larger scale are evaluated. 展开更多
关键词 DESALINATION Potable water reuse Ion-exchange membrane Salinity gradient energy Wastewater discharge
原文传递
HYDRODYNAMIC CHARACTERISTICS OF CHINESE STURGEON SPAWNING GROUND IN YANGTZE RIVER 被引量:3
11
作者 YANG Yu YAN Zhong--min CHANG Jian-bo 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第2期225-230,共6页
Since the construction of the Gezhouba Dam on the Yangtze River in 1981, it has been found that the Chinese Sturgeon, Acipensor sinensis, performs natural propagation annually in a narrow reach downstream close to the... Since the construction of the Gezhouba Dam on the Yangtze River in 1981, it has been found that the Chinese Sturgeon, Acipensor sinensis, performs natural propagation annually in a narrow reach downstream close to the Gezhouba Dam site. This might allow one to better investigate the river hydrodynamic conditions of the Chinese Sturgeon spawning ground. In this article, spatial Kinetic Energy Gradient (KEG) and absolute value of vorticity were computed along the river sections from measured data. The relation between Spawn Density per Unit Area (SDUA) and vorticity strength and between SDUA and KEG were worked out. The Results showed that the vorticity and KEG were both effective parameters for describing the hydrodynamic characteristics of Chinese Sturgeon spawning ground. The Chinese Sturgeons prefer to spawn in the river sections where the value of vorticity strength is larger than 0.4 s^-1 and KEG is larger than 0.029 Jkg^-1m^-1. 展开更多
关键词 hydrodynamic characteristics Chinese Sturgeon spawning ground VORTICITY kinetic energy gradient Spawn Densityper Unit Area (SDUA)
原文传递
Influence of Magnetic Force on the Flow Stability in a Rectangular Duct 被引量:1
12
作者 Rahman Anisur Wenqian Xu +3 位作者 Kunhang Li Hua-Shu Dou Boo Cheong Khoo Jie Mao 《Advances in Applied Mathematics and Mechanics》 SCIE 2019年第1期24-37,共14页
The stability of the flow under the magnetic force is one of the classical problems in fluid mechanics.In this paper,the flow in a rectangular duct with different Hartmann(Ha)number is simulated.The finite volume meth... The stability of the flow under the magnetic force is one of the classical problems in fluid mechanics.In this paper,the flow in a rectangular duct with different Hartmann(Ha)number is simulated.The finite volume method and the SIMPLE algorithm are used to solve a system of equations and the energy gradient theory is then used to study the(associated)stability of magnetohydrodynamics(MHD).According to the energy gradient theory,K represents the ratio of energy gradient in transverse direction and the energy loss due to viscosity in streamline direction.Position with large K will lose its stability earlier than that with small K.The flow stability of MHD flow for different Hartmann(Ha)number,from Ha=1 to 40,at the fixed Reynolds number,Re=190 are investigated.The simulation is validated firstly against the simulation in literature.The results show that,with the increasing Ha number,the centerline velocity of the rectangular duct with MHD flow decreases and the absolute value of the gradient of total mechanical energy along the streamwise direction increases.The maximum of K appears near the wall in both coordinate axis of the duct.According to the energy gradient theory,this position of the maximum of K would initiate flow instability(if any)than the other positions.The higher the Hartmann number is,the smaller the K value becomes,which means that the fluid becomes more stable in the presence of higher magnetic force.As the Hartmann number increases,the K value in the parallel layer decreases more significantly than in the Hartmann layer.The most dangerous position of instability tends to migrate towards wall of the duct as the Hartmann number increases.Thus,with the energy gradient theory,the stability or instability in the rectangular duct can be controlled by modulating the magnetic force. 展开更多
关键词 Numerical simulation rectangular duct magnetic force energy gradient theory STABILITY MHD
原文传递
TRANSPORT EFFICIENCY OF THE SPIRAL FLOW IN CIRCULAR PIPE
13
作者 Peng Long-sheng, Lu Zhun-wei Taiyuan University of Technology, Taiyuan 030024, China 《Journal of Hydrodynamics》 SCIE EI CSCD 2001年第4期119-122,共4页
A concise definition of Transport Efficiency (TE) was given to examine the amount of transported grains in the pipe flow with certain energy consumption. The transport characteristics and the so-called 'roto-float... A concise definition of Transport Efficiency (TE) was given to examine the amount of transported grains in the pipe flow with certain energy consumption. The transport characteristics and the so-called 'roto-floating' characteristics were studied from the tests of sediment transport in the normal pipe flow and the spiral pipe flow, and hereby the energy gradients of the two kinds of pipe flows were obtained. By comparing the mean concentrations at the same gradient, it was concluded that the TE of the latter is several times to over ten times higher than that of the former, and the lift of the latter is 200 times larger than that of the former for the nearly same TE. The spiral flow in circular pipe is suitable for transporting fine grains of high concentration, and with sedimentation trend and coarse grains. 展开更多
关键词 spiral flow in circular pipe transport efficiency transport characteristics roto-floationg characteristics LIFT energy gradient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部