The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.T...The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes.Building on the anatomical characteristics of bone and interfacial tissues,this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues,specifically focusing on methods used to construct compositional and structural gradients within the scaffolds.The latest applications of gradient scaffolds for the regeneration of bone,osteochondral,and tendon-to-bone interfaces are presented.Furthermore,the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed,as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries.展开更多
The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nev...The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nevertheless,due to its displacement and poor mechanical support,bone meal is not suitable for implantation in the case of insufficient cortical bone support and large dimensional defects.The combination of GTR/GBR membrane with a three-dimensional(3D)porous scaffold may offer a resolution for the repair and functional reconstruction of large soft and hard tissue defects.In this study,a novel integrated gradient biodegradable porous scaffold was prepared by bonding a poly(lactic-co-glycolic acid)(PLGA)/fish collagen(FC)electrospun membrane(PFC)to a 3D-printed PLGA/nano-hydroxyapatite(HA)(PHA)scaffold.The consistency of the composition(PLGA)ensured strong interfacial bonding between the upper fibrous membrane and the lower 3D scaffold.In vitro cell experiments showed that the PFC membrane(upper layer)effectively prevented the unwanted migration of L929 cells.Further in vivo investigations with an oral soft and hard tissue defect model in beagles revealed that the integrated scaffold effectively guided the regeneration of defective oral tissues.These results suggest that the designed integrated scaffold has great potential for guiding the regeneration and reconstruction of large oral soft and hard tissues.展开更多
Meniscus is a wedge-shaped fibrocartilaginous tissue,playing important roles in maintaining joint stability and function.Meniscus injuries are difficult to heal and frequently progress into structural breakdown,which ...Meniscus is a wedge-shaped fibrocartilaginous tissue,playing important roles in maintaining joint stability and function.Meniscus injuries are difficult to heal and frequently progress into structural breakdown,which then leads to osteoarthritis.Regeneration of heterogeneous tissue engineering meniscus(TEM)continues to be a scientific and translational challenge.The morphology,tissue architecture,mechanical strength,and functional applications of the cultivated TEMs have not been able to meet clinical needs,which may due to the negligent attention on the importance of microenvironment in vitro and in vivo.Herein,we combined the 3D(three-dimensional)-printed gradient porous scaffolds,spatiotemporal partition release of growth factors,and anti-inflammatory and anti-oxidant microenvironment regulation of Ac2-26 peptide to prepare a versatile meniscus composite scaffold with heterogeneous bionic structures,excellent biomechanical properties and anti-inflammatory and anti-oxidant effects.By observing the results of cell activity and differentiation,and biomechanics under anti-inflammatory and anti-oxidant microenvironments in vitro,we explored the effects of anti-inflammatory and anti-oxidant microenvironments on construction of regional and functional heterogeneous TEM via the growth process regulation,with a view to cultivating a high-quality of TEM from bench to bedside.展开更多
Owing to the prevalence of rotator cuff(RC)injuries and suboptimal healing outcome,rapid and functional regeneration of the tendon-bone interface(TBI)after RC repair continues to be a major clinical challenge.Given th...Owing to the prevalence of rotator cuff(RC)injuries and suboptimal healing outcome,rapid and functional regeneration of the tendon-bone interface(TBI)after RC repair continues to be a major clinical challenge.Given the essential role of the RC in shoulder movement,the engineering of biomimetic multi-tissue constructs presents an opportunity for complex TBI reconstruction after RC repair.Here,we propose a gradient cell-laden multi-tissue construct combined with compositional gradient TBI-specific bioinks via 3D cell-printing technology.In vitro studies demonstrated the capability of a gradient scaffold system in zone-specific inducibility and multi-tissue formation mimicking TBI.The regenerative performance of the gradient scaffold on RC regeneration was determined using a rat RC repair model.In particular,we adopted nondestructive,consecutive,and tissue-targeted near-infrared fluorescence imaging to visualize the direct anatomical change and the intricate RC regeneration progression in real time in vivo.Furthermore,the 3D cell-printed implant promotes effective restoration of shoulder locomotion function and accelerates TBI healing in vivo.In summary,this study identifies the therapeutic contribution of cell-printed constructs towards functional RC regeneration,demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces.展开更多
In spite of the considerable achievements in the field of regenerative medicine in the past several decades,osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system be...In spite of the considerable achievements in the field of regenerative medicine in the past several decades,osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition,structure and functions.In order to repair the hierarchical tissue involving different layers of articular cartilage,cartilage-bone interface and subchondral bone,traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling.It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional,structural and functional characteristics to the native osteochondral tissues.Here in this review,some basic knowledge of the osteochondral units including the anatomical structure and composition,the defect classification and clinical treatments will be first introduced.Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design,cell encapsulation and signaling factor incorporation including bioreactor application.Clinical products for osteochondral defect repair will be analyzed and summarized later.Moreover,we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52473121,52403370 and 52221006)Fundamental Research Funds for the Central Universities(buctrc202020,buctrc202312).
文摘The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes.Building on the anatomical characteristics of bone and interfacial tissues,this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues,specifically focusing on methods used to construct compositional and structural gradients within the scaffolds.The latest applications of gradient scaffolds for the regeneration of bone,osteochondral,and tendon-to-bone interfaces are presented.Furthermore,the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed,as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries.
基金supported by the National Natural Science Foundation of China(No.32371398)the Sichuan International Science and Technology Innovation Cooperation Project,China(No.2023YFH0064)+1 种基金the National Key Research and Development Program of China(No.2016YFA0201700)the Fundamental Research Funds for the Central Universities,China。
文摘The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nevertheless,due to its displacement and poor mechanical support,bone meal is not suitable for implantation in the case of insufficient cortical bone support and large dimensional defects.The combination of GTR/GBR membrane with a three-dimensional(3D)porous scaffold may offer a resolution for the repair and functional reconstruction of large soft and hard tissue defects.In this study,a novel integrated gradient biodegradable porous scaffold was prepared by bonding a poly(lactic-co-glycolic acid)(PLGA)/fish collagen(FC)electrospun membrane(PFC)to a 3D-printed PLGA/nano-hydroxyapatite(HA)(PHA)scaffold.The consistency of the composition(PLGA)ensured strong interfacial bonding between the upper fibrous membrane and the lower 3D scaffold.In vitro cell experiments showed that the PFC membrane(upper layer)effectively prevented the unwanted migration of L929 cells.Further in vivo investigations with an oral soft and hard tissue defect model in beagles revealed that the integrated scaffold effectively guided the regeneration of defective oral tissues.These results suggest that the designed integrated scaffold has great potential for guiding the regeneration and reconstruction of large oral soft and hard tissues.
基金the National Natural Science Foundation of China(NSFC,82002298,51920105006,51973226)the China Postdoctoral Science Foundation(2020M670066)+1 种基金the National Key Research and Development Program of China(2016YFC1100704)the Youth Innovation Promotion Association CAS(2019031).
文摘Meniscus is a wedge-shaped fibrocartilaginous tissue,playing important roles in maintaining joint stability and function.Meniscus injuries are difficult to heal and frequently progress into structural breakdown,which then leads to osteoarthritis.Regeneration of heterogeneous tissue engineering meniscus(TEM)continues to be a scientific and translational challenge.The morphology,tissue architecture,mechanical strength,and functional applications of the cultivated TEMs have not been able to meet clinical needs,which may due to the negligent attention on the importance of microenvironment in vitro and in vivo.Herein,we combined the 3D(three-dimensional)-printed gradient porous scaffolds,spatiotemporal partition release of growth factors,and anti-inflammatory and anti-oxidant microenvironment regulation of Ac2-26 peptide to prepare a versatile meniscus composite scaffold with heterogeneous bionic structures,excellent biomechanical properties and anti-inflammatory and anti-oxidant effects.By observing the results of cell activity and differentiation,and biomechanics under anti-inflammatory and anti-oxidant microenvironments in vitro,we explored the effects of anti-inflammatory and anti-oxidant microenvironments on construction of regional and functional heterogeneous TEM via the growth process regulation,with a view to cultivating a high-quality of TEM from bench to bedside.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF-2020M3H4A1A02084827)(D.-W.C)and the U.S.NIH/NIBIB grants#R01EB022230(H.S.C.).
文摘Owing to the prevalence of rotator cuff(RC)injuries and suboptimal healing outcome,rapid and functional regeneration of the tendon-bone interface(TBI)after RC repair continues to be a major clinical challenge.Given the essential role of the RC in shoulder movement,the engineering of biomimetic multi-tissue constructs presents an opportunity for complex TBI reconstruction after RC repair.Here,we propose a gradient cell-laden multi-tissue construct combined with compositional gradient TBI-specific bioinks via 3D cell-printing technology.In vitro studies demonstrated the capability of a gradient scaffold system in zone-specific inducibility and multi-tissue formation mimicking TBI.The regenerative performance of the gradient scaffold on RC regeneration was determined using a rat RC repair model.In particular,we adopted nondestructive,consecutive,and tissue-targeted near-infrared fluorescence imaging to visualize the direct anatomical change and the intricate RC regeneration progression in real time in vivo.Furthermore,the 3D cell-printed implant promotes effective restoration of shoulder locomotion function and accelerates TBI healing in vivo.In summary,this study identifies the therapeutic contribution of cell-printed constructs towards functional RC regeneration,demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces.
基金This work was supported by grants from the National Natural Science Foundation of China(No.51772233)the National Key Research and Development Program of China(2018YFB1105500)+3 种基金the Major Special Projects of Technological Innovation of Hubei Province(No.2019ACA130)the Application Foundation and Front Research Program of Wuhan(No.2018010401011273)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-008)the Fundamental Research Funds for the Central Universities(2020-YB-015).
文摘In spite of the considerable achievements in the field of regenerative medicine in the past several decades,osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition,structure and functions.In order to repair the hierarchical tissue involving different layers of articular cartilage,cartilage-bone interface and subchondral bone,traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling.It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional,structural and functional characteristics to the native osteochondral tissues.Here in this review,some basic knowledge of the osteochondral units including the anatomical structure and composition,the defect classification and clinical treatments will be first introduced.Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design,cell encapsulation and signaling factor incorporation including bioreactor application.Clinical products for osteochondral defect repair will be analyzed and summarized later.Moreover,we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.