The world's energy system is changing dramatically.Li-ion battery,as a powerful and highly effective energy storage technique,is crucial to the new energy revolution for its continuously expanding application in e...The world's energy system is changing dramatically.Li-ion battery,as a powerful and highly effective energy storage technique,is crucial to the new energy revolution for its continuously expanding application in electric vehicles and grids.Over the entire lifetime of these power batteries,it is essential to monitor their state of health not only for the predicted mileage and safety management of the running electric vehicles,but also for an"end-of-life"evaluation for their repurpose.Electrochemical impedance spectroscopy(EIS)has been widely used to diagnose the health state of batteries quickly and nondestructively.In this review,we have outlined the working principles of several electrochemical impedance techniques and further evaluated their application prospects to achieve the goal of nondestructive testing of battery health.EIS can scientifically and reasonably perform real-time monitoring and evaluation of electric vehicle power batteries in the future and play an important role in vehicle safety and battery gradient utilization.展开更多
The accelerating electrification has sparked an explosion in lithium-ion batteries(LIBs)consumption.As the lifespan declines,the substantial LIBs will flow into the recycling market and promise to spawn a giant recycl...The accelerating electrification has sparked an explosion in lithium-ion batteries(LIBs)consumption.As the lifespan declines,the substantial LIBs will flow into the recycling market and promise to spawn a giant recycling system.Nonetheless,since the lack of unified guiding standard and nontraceability,the recycling of end-of-life LIBs has fallen into the dilemma of low recycling rate,poor recycling efficiency,and insignificant benefits.Herein,tapping into summarizing and analyzing the current status and challenges of recycling LIBs,this outlook provides insights for the future course of full lifecycle management of LIBs,proposing gradient utilization and recycling-target predesign strategy.Further,we acknowledge some recommendations for recycling waste LIBs and anticipate a collaborative effort to advance sustainable and reliable recycling routes.展开更多
基金financially supported by the State Grid Corporation Science and Technology Project of China(No.520940180017)。
文摘The world's energy system is changing dramatically.Li-ion battery,as a powerful and highly effective energy storage technique,is crucial to the new energy revolution for its continuously expanding application in electric vehicles and grids.Over the entire lifetime of these power batteries,it is essential to monitor their state of health not only for the predicted mileage and safety management of the running electric vehicles,but also for an"end-of-life"evaluation for their repurpose.Electrochemical impedance spectroscopy(EIS)has been widely used to diagnose the health state of batteries quickly and nondestructively.In this review,we have outlined the working principles of several electrochemical impedance techniques and further evaluated their application prospects to achieve the goal of nondestructive testing of battery health.EIS can scientifically and reasonably perform real-time monitoring and evaluation of electric vehicle power batteries in the future and play an important role in vehicle safety and battery gradient utilization.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173246,91963118。
文摘The accelerating electrification has sparked an explosion in lithium-ion batteries(LIBs)consumption.As the lifespan declines,the substantial LIBs will flow into the recycling market and promise to spawn a giant recycling system.Nonetheless,since the lack of unified guiding standard and nontraceability,the recycling of end-of-life LIBs has fallen into the dilemma of low recycling rate,poor recycling efficiency,and insignificant benefits.Herein,tapping into summarizing and analyzing the current status and challenges of recycling LIBs,this outlook provides insights for the future course of full lifecycle management of LIBs,proposing gradient utilization and recycling-target predesign strategy.Further,we acknowledge some recommendations for recycling waste LIBs and anticipate a collaborative effort to advance sustainable and reliable recycling routes.