In view of the large quantities of areas, complex landform and dynamic change of resources and environment in China, China has already funded abundantly a series of macro remote sensing investigation projects in land ...In view of the large quantities of areas, complex landform and dynamic change of resources and environment in China, China has already funded abundantly a series of macro remote sensing investigation projects in land use/ cover change(LUCC) since 1990. Supported by the achievements of such projects, Chinese resources, environmental and remote sensing database (CRERS) was created. In this paper, we standardized the LUCC dataset of CRERS at scale of 1km, which facilitated the study of spatial features of LUCC in China. The analysis on the spatial features of LUCC and their causes of formation in China are based on the CRERS supported by the technologies of Geographic Information System (GIS). The whole research was based on the grade index of land use, ecological environmental index and index of population density. Based on the correlation analysis, we found that the special features of LUCC were closely related with those of ecological environment and population density, which resulted from that areas with better ecological environment and high production potential of land were easy and convenient for human being to live, which, furthermore, led to the aggravation of excessive exploitation of land resources there.展开更多
This paper analyzed the pore structure, quantified the pore fractal dimension, calculated the grading index(GI) of mixed aggregate, and studied the relationship among GI, pore structure, and strength to describe the c...This paper analyzed the pore structure, quantified the pore fractal dimension, calculated the grading index(GI) of mixed aggregate, and studied the relationship among GI, pore structure, and strength to describe the cross-scale characteristics of backfill, which is made from stone powder and cemented tailing. A series of experiments were conducted on stone powder cement tailings backfill(SPCTB). The GI formulas for mixed aggregates, containing stone powder and tailings, were derived based on the Füller theory. The nuclear magnetic resonance(NMR) fractal dimensions of backfills were derived using fractal geometry principles. Compared to the mesopore and macropore fractal dimensions, the correlation between micropore fractal dimension and macro-properties in terms of NMR porosity, pore structure complexity, uniaxial compression strength(UCS), and GI is the most significant. Macropore fractal dimension is generally correlated with UCS and GI and the other properties such as the shape of mixed aggregates also have an impact on fractal dimension. However, mesopore fractal dimension has no obvious relationship with macro-properties. Finally, the relationship between GI and UCS was studied, which contributed to improving backfill’s strength and optimizing gradation.展开更多
A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3...A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.展开更多
Light propagation in nanoparticle-loaded encapsulants is simulated based on the method of Monte Carlo,referring to the multilayer graded-refractive-index structure for LED encapsulants.And the influence of scattering ...Light propagation in nanoparticle-loaded encapsulants is simulated based on the method of Monte Carlo,referring to the multilayer graded-refractive-index structure for LED encapsulants.And the influence of scattering coefficient on the transmittance is analyzed.The results show that the transmittance decreases with scattering coefficient.For a given number of layers,the encapsulants will yield maximum transmittance if the refractive index value of each layer is optimized.The nanoparticle-loaded encapsulant consists of multiple layers with refractive-index values that gradually decrease.The transmittance will be higher than that of traditional non-graded encapsulants,and will improve light extraction efficiency of LED.展开更多
The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, an...The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.展开更多
This paper reports that SiO2 is selected to fabricate broadband antireflection (AR) coatings on fused silica substrate by using glancing angle deposition and physical vapour deposition. Through accurate control of t...This paper reports that SiO2 is selected to fabricate broadband antireflection (AR) coatings on fused silica substrate by using glancing angle deposition and physical vapour deposition. Through accurate control of the graded index of the SiO2 layer, transmittance of thc graded broadband AR coating can achieve an average value of 98% across a spectral range of 300-1850 nm. Moreover, a laser-induced damage threshold measurement of the fabricated AR coating is performed by using a one-on-one protocol according to ISOl1254-1, resulting in an average damage threshold of 17.2 J/cm2.展开更多
Graded negative refractive index-based photonic crystal (PC) lenses are designed by gradually modifying the sizes of air holes along the transverse direction for focusing the incident plane wave. To study the tunabi...Graded negative refractive index-based photonic crystal (PC) lenses are designed by gradually modifying the sizes of air holes along the transverse direction for focusing the incident plane wave. To study the tunability of the graded negative index-based PC, we introduce filling factor A, gradually tune the filling factor, and use the finite-difference and time-domain (FDTD) algorithm for numerical calculation. Our calculation results indicate that the focal length and the spot size increase with A increasing. For the same A value, the focal length of a PC with elliptical air holes is the longest, and those of PC with square and rectangular air holes are the shortest. Moreover, when the focal length is greater than 1 ~xm, the focal parameters of the PC are highly insensitive to the variation of A. When the focal length is less than 1 gm, the PC lenses have higher transmittances and all well focus with a beam spot size breaking the diffraction limit. This feature possibly makes the graded negative index-based PC lenses have some new applications in optoelectronic systems.展开更多
Flat lenses are designed by means of graded negative refractive index-based photonic crystals (PCs) constructed using air-holes tuned with different shapes. By gradually modifying the filling factor along the transv...Flat lenses are designed by means of graded negative refractive index-based photonic crystals (PCs) constructed using air-holes tuned with different shapes. By gradually modifying the filling factor along the transverse direction, we obtain the graded negative index-based lenses for the purpose of focusing an incident plane wave. The finite-difference and timedomain (FDTD) algorithm is adopted for numerical calculation. Our calculation results indicate that these lenses can finely focus incident plane waves. Moreover, for the same size of air-holes, the focusing properties of the lens with rectangular air-holes are better than those with the other shaped air-holes. The graded negative index PCs lenses could possibly enable new applications in optoelectronic systems.展开更多
文摘In view of the large quantities of areas, complex landform and dynamic change of resources and environment in China, China has already funded abundantly a series of macro remote sensing investigation projects in land use/ cover change(LUCC) since 1990. Supported by the achievements of such projects, Chinese resources, environmental and remote sensing database (CRERS) was created. In this paper, we standardized the LUCC dataset of CRERS at scale of 1km, which facilitated the study of spatial features of LUCC in China. The analysis on the spatial features of LUCC and their causes of formation in China are based on the CRERS supported by the technologies of Geographic Information System (GIS). The whole research was based on the grade index of land use, ecological environmental index and index of population density. Based on the correlation analysis, we found that the special features of LUCC were closely related with those of ecological environment and population density, which resulted from that areas with better ecological environment and high production potential of land were easy and convenient for human being to live, which, furthermore, led to the aggravation of excessive exploitation of land resources there.
基金Project(41672298)supported by the National Natural Science Foundation of ChinaProject(2017YFC0602901)supported by the National Key Research and Development Program of China。
文摘This paper analyzed the pore structure, quantified the pore fractal dimension, calculated the grading index(GI) of mixed aggregate, and studied the relationship among GI, pore structure, and strength to describe the cross-scale characteristics of backfill, which is made from stone powder and cemented tailing. A series of experiments were conducted on stone powder cement tailings backfill(SPCTB). The GI formulas for mixed aggregates, containing stone powder and tailings, were derived based on the Füller theory. The nuclear magnetic resonance(NMR) fractal dimensions of backfills were derived using fractal geometry principles. Compared to the mesopore and macropore fractal dimensions, the correlation between micropore fractal dimension and macro-properties in terms of NMR porosity, pore structure complexity, uniaxial compression strength(UCS), and GI is the most significant. Macropore fractal dimension is generally correlated with UCS and GI and the other properties such as the shape of mixed aggregates also have an impact on fractal dimension. However, mesopore fractal dimension has no obvious relationship with macro-properties. Finally, the relationship between GI and UCS was studied, which contributed to improving backfill’s strength and optimizing gradation.
基金supported by the Foundation for Development of Science and Technology of Shanghai (Grant No 022261002)
文摘A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.
基金National High-tech R&D Programof China "863" Program(2006AA03A130)
文摘Light propagation in nanoparticle-loaded encapsulants is simulated based on the method of Monte Carlo,referring to the multilayer graded-refractive-index structure for LED encapsulants.And the influence of scattering coefficient on the transmittance is analyzed.The results show that the transmittance decreases with scattering coefficient.For a given number of layers,the encapsulants will yield maximum transmittance if the refractive index value of each layer is optimized.The nanoparticle-loaded encapsulant consists of multiple layers with refractive-index values that gradually decrease.The transmittance will be higher than that of traditional non-graded encapsulants,and will improve light extraction efficiency of LED.
基金supported by the National Key Basic Research Special Foundation of China (Grant No. 2011CB922000)the National Natural Science Foundation of China (Grant Nos. 61025025 and 60838003)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408)
文摘The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804060)Higher Educational Science and Technology Program of Shandong Province of China (Grant No. J08LI05)
文摘This paper reports that SiO2 is selected to fabricate broadband antireflection (AR) coatings on fused silica substrate by using glancing angle deposition and physical vapour deposition. Through accurate control of the graded index of the SiO2 layer, transmittance of thc graded broadband AR coating can achieve an average value of 98% across a spectral range of 300-1850 nm. Moreover, a laser-induced damage threshold measurement of the fabricated AR coating is performed by using a one-on-one protocol according to ISOl1254-1, resulting in an average damage threshold of 17.2 J/cm2.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)
文摘Graded negative refractive index-based photonic crystal (PC) lenses are designed by gradually modifying the sizes of air holes along the transverse direction for focusing the incident plane wave. To study the tunability of the graded negative index-based PC, we introduce filling factor A, gradually tune the filling factor, and use the finite-difference and time-domain (FDTD) algorithm for numerical calculation. Our calculation results indicate that the focal length and the spot size increase with A increasing. For the same A value, the focal length of a PC with elliptical air holes is the longest, and those of PC with square and rectangular air holes are the shortest. Moreover, when the focal length is greater than 1 ~xm, the focal parameters of the PC are highly insensitive to the variation of A. When the focal length is less than 1 gm, the PC lenses have higher transmittances and all well focus with a beam spot size breaking the diffraction limit. This feature possibly makes the graded negative index-based PC lenses have some new applications in optoelectronic systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11079014,61077010,90923036,and 60977041)the 100-Talent Program of the Chinese Academy of Sciences
文摘Flat lenses are designed by means of graded negative refractive index-based photonic crystals (PCs) constructed using air-holes tuned with different shapes. By gradually modifying the filling factor along the transverse direction, we obtain the graded negative index-based lenses for the purpose of focusing an incident plane wave. The finite-difference and timedomain (FDTD) algorithm is adopted for numerical calculation. Our calculation results indicate that these lenses can finely focus incident plane waves. Moreover, for the same size of air-holes, the focusing properties of the lens with rectangular air-holes are better than those with the other shaped air-holes. The graded negative index PCs lenses could possibly enable new applications in optoelectronic systems.