Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonat...Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.展开更多
To study the effect of some parameters, such as, length and fraction of glass fiber (GF), and the fraction of maleic anhydride grafted polypropylene (PP-g-MAH), on the mechanical properties of glass fiber reinforced p...To study the effect of some parameters, such as, length and fraction of glass fiber (GF), and the fraction of maleic anhydride grafted polypropylene (PP-g-MAH), on the mechanical properties of glass fiber reinforced polypropylene (GF/PP) composites, tensile tests, bending tests and impact tests were conducted. Scanning electron microscope (SEM) was used to characterize the fracture mechanisms of the composites. The results show that, compared with 3 mm GF, 9 mm GF can significantly improve the strength of the composite better. Addition of PP-g-MAH, a kind of grafting agent, into the PP-30% LGF composite can result in a better mechanical properties because of the strengthening of the bonding interface between the matrix and the fiber. When the mass fraction of GF is 30% and the PP-g-MAH fraction is 6%, the mechanical properties of the composite are the best.展开更多
Well-defined polypropylene grafted silica nanoparticles(PP-g-SiO_(2))were prepared through the reaction of maleic anhydride grafted polypropylene(PP-g-MAH)with amino-functionalized silica(SiO_(2)-NH_(2))by the'gra...Well-defined polypropylene grafted silica nanoparticles(PP-g-SiO_(2))were prepared through the reaction of maleic anhydride grafted polypropylene(PP-g-MAH)with amino-functionalized silica(SiO_(2)-NH_(2))by the'grafting-to'method.The grafting density of PP-g-SiO_(2) is found to be controlled by the concentration of silane coupling agent 3-[2-(2-aminoethylamino)ethyl amino]propyl trimethoxy silane(TAMS).The maximum grafting density of grafted PP-g-MAH chains with molecular weight of 9100 g/mol could reach 0.34 chains/nm~2,when the critical concentration of TAMS was 0.0194 mol/L.The critical concentration of TAMS can be explained by the maximum amounts of primary amino groups,which can totally react with PP-g-MAH on the surface of SiO_(2)-NH_(2),when the silane monolayer is formed.The synthesized PP-g-SiO_(2)with different molecular weights was mixed with PP by solution mixing to form a series of nanocomposites.The crystallization temperature(T_(c))of nanocomposites increased significantly with the particle loading.The PP-g-SiO_(2) with high molecular weight of grafted chains exhibits a high nucleation ability at 1 wt%nanoparticle loading in PP/PP-g-SiO_(2)nanocomposites.In summary,we provide an effective method to synthesize the well-defined PP-g-SiO_(2)with controlled grafting density,which shows excellent nucleation ability.展开更多
The surface of polypropylene (iPP) is modified with glow discharge plasma of Ar, so that the modified surfaces of iPP films are obtained. The studies of scanning electron microscopy (SEM) show the surface etching ...The surface of polypropylene (iPP) is modified with glow discharge plasma of Ar, so that the modified surfaces of iPP films are obtained. The studies of scanning electron microscopy (SEM) show the surface etching pattern of iPP films. The chemical structures of iPP films are confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The wetting properties of modified surfaces of iPP films are characterized by contact angle, and the free energy of surfaces is calculated. The free radical of modification surfaces of iPP is measured by chemical method. The surfaces of iPP are achieved with Ar plasma treatment followed by grafting copolymerization with styrene (St) in St. The grafting polymer of St onto iPP is characterized by FTIR. The grafting rate is dependent on plasma exposure time and discharge voltage. The studies show that homopolymerization of St is undergone at the sane time during the graftingcopolymerization of St onto/PP.展开更多
文摘Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.
基金Funded by National Natural Science Foundation of China(Nos.51705295,51778351)the Science and Technology Project for the Universities of Shandong Province (No.J16LA58)Shandong University of Science and Technology Research Fund (No.2018 TDJH101)
文摘To study the effect of some parameters, such as, length and fraction of glass fiber (GF), and the fraction of maleic anhydride grafted polypropylene (PP-g-MAH), on the mechanical properties of glass fiber reinforced polypropylene (GF/PP) composites, tensile tests, bending tests and impact tests were conducted. Scanning electron microscope (SEM) was used to characterize the fracture mechanisms of the composites. The results show that, compared with 3 mm GF, 9 mm GF can significantly improve the strength of the composite better. Addition of PP-g-MAH, a kind of grafting agent, into the PP-30% LGF composite can result in a better mechanical properties because of the strengthening of the bonding interface between the matrix and the fiber. When the mass fraction of GF is 30% and the PP-g-MAH fraction is 6%, the mechanical properties of the composite are the best.
基金financially supported by the National Natural Science Foundation of China(No.51820105005)the Ministry of Science and Technology of China(No.2017YFE0117800)。
文摘Well-defined polypropylene grafted silica nanoparticles(PP-g-SiO_(2))were prepared through the reaction of maleic anhydride grafted polypropylene(PP-g-MAH)with amino-functionalized silica(SiO_(2)-NH_(2))by the'grafting-to'method.The grafting density of PP-g-SiO_(2) is found to be controlled by the concentration of silane coupling agent 3-[2-(2-aminoethylamino)ethyl amino]propyl trimethoxy silane(TAMS).The maximum grafting density of grafted PP-g-MAH chains with molecular weight of 9100 g/mol could reach 0.34 chains/nm~2,when the critical concentration of TAMS was 0.0194 mol/L.The critical concentration of TAMS can be explained by the maximum amounts of primary amino groups,which can totally react with PP-g-MAH on the surface of SiO_(2)-NH_(2),when the silane monolayer is formed.The synthesized PP-g-SiO_(2)with different molecular weights was mixed with PP by solution mixing to form a series of nanocomposites.The crystallization temperature(T_(c))of nanocomposites increased significantly with the particle loading.The PP-g-SiO_(2) with high molecular weight of grafted chains exhibits a high nucleation ability at 1 wt%nanoparticle loading in PP/PP-g-SiO_(2)nanocomposites.In summary,we provide an effective method to synthesize the well-defined PP-g-SiO_(2)with controlled grafting density,which shows excellent nucleation ability.
基金financially supported by the National Natural Science Foundation of China(No.50673073)the Doctoral Foundation of Ministry of Education of China(No.20060056043)
文摘The surface of polypropylene (iPP) is modified with glow discharge plasma of Ar, so that the modified surfaces of iPP films are obtained. The studies of scanning electron microscopy (SEM) show the surface etching pattern of iPP films. The chemical structures of iPP films are confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The wetting properties of modified surfaces of iPP films are characterized by contact angle, and the free energy of surfaces is calculated. The free radical of modification surfaces of iPP is measured by chemical method. The surfaces of iPP are achieved with Ar plasma treatment followed by grafting copolymerization with styrene (St) in St. The grafting polymer of St onto iPP is characterized by FTIR. The grafting rate is dependent on plasma exposure time and discharge voltage. The studies show that homopolymerization of St is undergone at the sane time during the graftingcopolymerization of St onto/PP.