期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of P impurity on NiAlΣ5 grain boundary from first-principles study 被引量:1
1
作者 Xue-Lan Hu Ruo-Xi Zhao +1 位作者 Yang Luo Qing-Gong Song 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期121-126,共6页
First-principles calculations based on the density functional theory(DFT) and ultra-soft pseudopotential are employed to study the atomic configuration and charge density of impurity P in Ni Al Σ5 grain boundary(G... First-principles calculations based on the density functional theory(DFT) and ultra-soft pseudopotential are employed to study the atomic configuration and charge density of impurity P in Ni Al Σ5 grain boundary(GB). The negative segregation energy of a P atom proves that a P atom can easily segregate in the Ni Al GB. The atomic configuration and formation energy of the P atom in the Ni Al GB demonstrate that the P atom tends to occupy an interstitial site or substitute a Al atom depending on the Ni/Al atoms ratio. The P atom is preferable to staying in the Ni-rich environment in the Ni Al GB forming P–Ni bonds. Both of the charge density and the deformation charge imply that a P atom is more likely to bond with Ni atoms rather than with Al atoms. The density of states further exhibits the interactions between P atom and Ni atom, and the orbital electrons of P, Ni and Al atoms all contribute to P–Ni bonds in the Ni Al GB. It is worth noting that the P–Ni covalent bonds might embrittle the Ni Al GB and weakens the plasticity of the Ni Al intermetallics. 展开更多
关键词 NiAlΣ5 grain boundary impurity effect first principles
下载PDF
Distortion Regions near the Grain Boundary and Their Effects on Nanocrystalline Materials
2
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第6期554-558,共5页
关键词 Distortion Regions near the grain boundary and Their effects on Nanocrystalline Materials
下载PDF
Effect of grain boundary on the mechanical behaviors of irradiated metals: a review 被引量:1
3
作者 Xia Zi Xiao Hai Jian Chu Hui Ling Duan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第6期24-34,共11页
The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the de... The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale. 展开更多
关键词 mechanical behaviors irradiation effect grain boundary multi-scale modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部