In this study,more than 1500 particles of lightweight expanded clay aggregate(LECA)are individually loaded up to breakage,following different patterns of contact(from 2 to 7)using a purpose-built apparatus.Consequentl...In this study,more than 1500 particles of lightweight expanded clay aggregate(LECA)are individually loaded up to breakage,following different patterns of contact(from 2 to 7)using a purpose-built apparatus.Consequently,a statistical model for predicting the number of fragments into which a grain breaks as a function of the number of contacts and their diameter is proposed.The number of fragments is found to follow a statistical binomial-type distribution function that depends on the number of contacts.In addition,a model based on Bayesian networks,capable of assessing the number of fragments and their size(measured as normalized weight)as a function of the number of contacts,is implemented.The proposed method is applicable when performing discrete element method(DEM)simulations on granular media in which grain breakage plays a relevant role.展开更多
This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%...This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.展开更多
True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from t...True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.展开更多
文摘In this study,more than 1500 particles of lightweight expanded clay aggregate(LECA)are individually loaded up to breakage,following different patterns of contact(from 2 to 7)using a purpose-built apparatus.Consequently,a statistical model for predicting the number of fragments into which a grain breaks as a function of the number of contacts and their diameter is proposed.The number of fragments is found to follow a statistical binomial-type distribution function that depends on the number of contacts.In addition,a model based on Bayesian networks,capable of assessing the number of fragments and their size(measured as normalized weight)as a function of the number of contacts,is implemented.The proposed method is applicable when performing discrete element method(DEM)simulations on granular media in which grain breakage plays a relevant role.
基金financially supported by the European Union for the project Marie Curie TOK-DEV MTKD-CT-2006-042468
文摘This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.
基金supported by the National Key Basic Research Program (No. 2010CB226800)the Innovation Team Development Program of the Ministry of Education (No. IRT0656)the Fundamental Research Funds for the Central Universities (No. 2010YL14)
文摘True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.