In January 2005, the United States Environmental Protection Agency registered spinosad as a stored grain protectant. No referenced data on the efficacy of spinosad on corn in suppressing major stored-grain insects hav...In January 2005, the United States Environmental Protection Agency registered spinosad as a stored grain protectant. No referenced data on the efficacy of spinosad on corn in suppressing major stored-grain insects have been published. In this paper, we evaluated the efficacy of spinosad against seven major stored-grain insects on shelled corn in the laboratory. Insect species tested were the red flour beetle, Tribolium castaneum (Jacquelin duVal); rusty grain beetle, Cryptolestesferrugineus (Stephens); lesser grain borer, Rhyzopertha dominica (F.); sawtoothed grain beetle, Oryzaephilus surinamensis (L.); rice weevil, Sitophilus oryzae (L.); maize weevil, Sitophilus zeamais (Motschulsky); and Indian meal moth, Plodia interpunctella (Htibner). Corn kernels were treated with spinosad at 0, 0. 1, 0.5, 1, and 2 active ingredient (a.i.) mg/kg for controlling the seven species. Beetle adults or P. interpunctella eggs were introduced into each container holding 100 g of untreated or insecticide-treated corn. The seven insect species survived well on the control treatment, produced 28 to 336 progeny, and caused significant kernel damage after 49 days. On spinosad-treated corn, adult mortality of C. ferrugineus, R. dominica, 0. surinamensis, S. oryzae, and S. zeamais was 〉 98% at 1 and 2 mg/kg after 12 days. Spinosad at≥ 0.5 mg/kg completely suppressed egg-to-larval survival after 21 days and egg-to-adult emergence of P. interpunctella after 49 days, whereas 16% T. castaneum adults survived at 1 mg/kg after 12 days. Spinosad at 1 or 2 mg/kg provided complete or near complete suppression of progeny production and kernel damage of all species after 49 days. Our results indicate that spinosad at the current labeled rate of 1 mg/kg is effective against the seven stored-grain insect pests on corn.展开更多
文摘In January 2005, the United States Environmental Protection Agency registered spinosad as a stored grain protectant. No referenced data on the efficacy of spinosad on corn in suppressing major stored-grain insects have been published. In this paper, we evaluated the efficacy of spinosad against seven major stored-grain insects on shelled corn in the laboratory. Insect species tested were the red flour beetle, Tribolium castaneum (Jacquelin duVal); rusty grain beetle, Cryptolestesferrugineus (Stephens); lesser grain borer, Rhyzopertha dominica (F.); sawtoothed grain beetle, Oryzaephilus surinamensis (L.); rice weevil, Sitophilus oryzae (L.); maize weevil, Sitophilus zeamais (Motschulsky); and Indian meal moth, Plodia interpunctella (Htibner). Corn kernels were treated with spinosad at 0, 0. 1, 0.5, 1, and 2 active ingredient (a.i.) mg/kg for controlling the seven species. Beetle adults or P. interpunctella eggs were introduced into each container holding 100 g of untreated or insecticide-treated corn. The seven insect species survived well on the control treatment, produced 28 to 336 progeny, and caused significant kernel damage after 49 days. On spinosad-treated corn, adult mortality of C. ferrugineus, R. dominica, 0. surinamensis, S. oryzae, and S. zeamais was 〉 98% at 1 and 2 mg/kg after 12 days. Spinosad at≥ 0.5 mg/kg completely suppressed egg-to-larval survival after 21 days and egg-to-adult emergence of P. interpunctella after 49 days, whereas 16% T. castaneum adults survived at 1 mg/kg after 12 days. Spinosad at 1 or 2 mg/kg provided complete or near complete suppression of progeny production and kernel damage of all species after 49 days. Our results indicate that spinosad at the current labeled rate of 1 mg/kg is effective against the seven stored-grain insect pests on corn.