A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions ...A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions were studied by grain growth simulation.It is found that the cross-track-averaged magnetization changes little between the L1_(0)FePt medium with uniform or non-uniform grain size distribution.展开更多
The Mg-Gd-Y-Zn-Zr alloys are representational and potential age-hardening systems as reported in the past ten years,but their mechanical properties are still dependent on the grain size and its distribution.The effect...The Mg-Gd-Y-Zn-Zr alloys are representational and potential age-hardening systems as reported in the past ten years,but their mechanical properties are still dependent on the grain size and its distribution.The effect of bimodal structure on mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions was investigated.The results suggested that the volume fraction of fine grain(FG)and coarse grain(CG)could be controlled by combined processes of hot forging,extrusion and annealing.And for the present alloys with bimodal grain size distribution,the improvement of strength is still attributed to the grain refinement.The morphology of bimodal grain size distribution has a marked impact on the ductility of the alloy,i.e.with the increase of coarse grain volume fraction,the elongation to failure increases at the beginning and then decreases.The mechanism of the toughening effect of bimodal grain size distribution on the Mg-Gd-Y-Zn-Zr alloys with bimodal grain size structure has been discussed.展开更多
Most of the available methods for the calculation of the three dimensional(3D)grain size dis- tribution functions(SDF)are based on the S model and lead a grave systematical error.The origin is the basic supposition of...Most of the available methods for the calculation of the three dimensional(3D)grain size dis- tribution functions(SDF)are based on the S model and lead a grave systematical error.The origin is the basic supposition of spherical grains in the S model,which does not correspond with the feature of real grains.A new model called A model is developed based on the hypothe- sis of polvhedral grains.The probability functions of the A model and the method to calculate the 3D SDFs using the A model are given in the present paper.The theoretical analyses and experimental tests have demonstrated that the A model reduces the systematical error radical- ly.It is nearly as simple as the so far used S model,but gives much better results in repro- ducing of 3D SDFs from the measured ID or 2D SDFs.展开更多
The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement ...In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement from a starting size of 16.4±6.8µm to 3.2±1.2µm was attained after FSP.Remarkably,bimodal grain size distribution was observed in the nugget zone with a combination of coarse(11.62±8.4µm)and fine grains(3.2±1.2µm).Due to the grain refinement,a slight improvement in the hardness was found in the nugget zone of FSPed AZ31.The bimodal grain size distribution in the stir zone showed pronounced influence on the corrosion rate of FSPed AZ31 as observed from the immersion and electrochemical tests.From the X-ray diffraction analysis,more amount of Mg(OH)_(2) was observed on FSPed AZ31 compared with the unprocessed AZ31.Polarization measurements demonstrated the higher corrosion current density for FSPed AZ31(8.92×10^(−5)A/cm^(2))compared with the unprocessed condition(2.90×10^(−5)A/cm^(2))that can be attributed to the texture effect and large variations in the grain size which led to non-uniform galvanic intensities.展开更多
The grain size composition, distribution characteristics and spatial variation of eolian sand soil on distinct positions across two longitudinal dunes and interdune areas were studied by means of conventional grain si...The grain size composition, distribution characteristics and spatial variation of eolian sand soil on distinct positions across two longitudinal dunes and interdune areas were studied by means of conventional grain size analysis and geostatistical methods. In the study, 184 samples of eolian sand soil from the 0-30cm layer were systemically collected and measured from two longitudinal dunes and interdunes in the southern Gurbantunggut Desert. The results show that the dominant grain sizes are fine and very fine sands, and the differences of grain size compositions between the distinct geomorphologic positions are significant. The contents of clay and silt are highest on the interdune areas and lowest on the crests, and higher on the leeward slopes than on the windward slopes. The contents of very fine and fine sands are highest on the windward slopes and lowest on the crests. The contents of medium, coarse and very coarse sands are lowest on the interdune lands, and highest on the crests, and are identical on the two slopes. The coarser sizes (phi(1)) and mean sizes (Mz) for eolian sand soil all have a varying tendency from fine to coarse sizes with interdune area -> leeward slope -> windward slope -> crest, and the sorting (sigma) are poorly to well sorted. The results of geostatistical analysis reveal that phi(1), Mz and a values are moderately to strongly spatially autocorrelated. The values of the spatially correlated ranges are phi(1) < sigma < Mz. The spatial variation for these grain size parameters is significant across the longitudinal dune landscape. From the crests towards the bottom of the slope, there is a varying gradient of zonal distribution, and the gradient values on the leeward slopes are larger than sites on the windward slopes.展开更多
Three-dimensional normal grain growth was appropriately simulated using a Potts model Monte Carlo algorithm. The quasi-stationary grain size distribution obtained from simulation agreed well with the experimental resu...Three-dimensional normal grain growth was appropriately simulated using a Potts model Monte Carlo algorithm. The quasi-stationary grain size distribution obtained from simulation agreed well with the experimental result of pure iron. The Weibull function with a parameter β=2.77 and the Yu-Liu function with a parameter v =2.71 fit the quasi-stationary grain size distribution well. The grain volume distribution is a function that decreased exponentially with increasing grain volume. The distribution of boundary area of grains has a peak at S/〈S〉=0.5, where S is the boundary area of a grain and 〈S〉 is the mean boundary area of all grains in the system. The lognormal function fits the face number distribution well and the peak of the face number distribution is f=10. The mean radius off-faced grains is not proportional to the face number, but appears to be related by a curve convex upward. In the 2D cross-section, both the perimeter law and the Aboav-Weaire law are observed to hold.展开更多
This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debr...This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debris flow). The grain size distribution of forty three soil samples was used to classify the soils according to the scheme of the Unified Soil Classification System(USCS). These distributions have then been used to estimate shear strength and hydraulic properties of the soils. There are clear differences between the soils which reflect their divergent origins. The glacial soils normally fit within one of two distinctive groups according to the proportion of fines(Group A, 7%-21.5%; Group B, 21%-65%). The estimation of shear strength at constant volume friction angle and peak shear strength of the glacial sediments with low content of fines was made using published data relating to the measured shear strength characteristics of soils with similar origins and grain size distributions. The estimated values were supported by measurements of the angle of repose taken from fourteen samples from two moraines and by shear tests on samples from one locality. The results of the grain size distribution werealso used to estimate the average hydraulic conductivity using the empirical Hazen formula which results were verified by field infiltration tests at two localities.展开更多
Grain composition of debris flow varies considerably from fluid to deposit, making it uncertain to estimate flow properties (e.g., density, velocity and discharge) using deposit as done in practice. Tracing the vari...Grain composition of debris flow varies considerably from fluid to deposit, making it uncertain to estimate flow properties (e.g., density, velocity and discharge) using deposit as done in practice. Tracing the variation of grain composition is thus more important than estimating some certain properties of flow because every debris flow event consists of a series of surges that are distinct in properties and flow regimes. We find that the materials of debris flows, both the fluid and the source soils, satisfy a universal grain size distribution (GSD) in a form of P (D) = CD-zexp(-D/Dc), where the parameters C, p and De are determined by fitting the function to the grain size frequency. A small At implies a small porosity and possible high excess pore pressure in flow; and a large D~ means a wide range of grain composition and hence a high sediment concentration. Flow density increases as 11 decreases or Dc increases, in a power law form. A debris flow always achieves a state of certain mobility and density that can be well described by the coupling of p and Dc, which imposes a constraint on the fluctuations of flow surges. The GSD also describes the changes in grain composition in that it is always satisfied during the course of debris flow developing. Numerical simulation using the GSD can well illustrate the variation ofμ and Dc from source soils to deposits.展开更多
Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of partic...Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of particle breakage on the CSL is mainly attributed to the change in GSD due to particle breakage.However,GSD has not been properly considered in modeling the CSL with influence of particle breakage.This study aims to propose a quantitative model to determine the CSL considering the effect of GSD.We hypothesize that the change of critical state void ratio with respect to GSD is caused by the same mechanism that influences of the change of minimum void ratio with respect to GSD.Consequently,the particle packing model for minimum void ratio proposed by Chang et al.(2017)is extended to predict critical state void ratio.The developed model is validated by experimental results of CSLs for several types of granular materials.Then the evolution of GSD due to particle breakage is incorporated into the model.The model is further evaluated using the experimental results on rockfill material,which illustrates the applicability of the model in predicting CSL for granular material with particle breakage.展开更多
Grain size distribution of bed material is an important characteristic for studying evolution of natural river channel by means of experimental ways and numerical modeling of flow and sediment process.In this study,th...Grain size distribution of bed material is an important characteristic for studying evolution of natural river channel by means of experimental ways and numerical modeling of flow and sediment process.In this study,the fractal characteristic of sediment particle has been defined by means of fractal theory based on ana- lyzing the property of grain size distribution of bed material in the river channel.Furthennore,the fractal prop- erty of sediment particle has been applied to judge the process of armorin...展开更多
Behaviors of the quasi-steady state grain size distribution and thecorresponding topological relationship were investigated using the Potts Monte Carlo method tosimulate the normal grain growth process. The observed q...Behaviors of the quasi-steady state grain size distribution and thecorresponding topological relationship were investigated using the Potts Monte Carlo method tosimulate the normal grain growth process. The observed quasi-steady state grain size distributioncan be well fit by the Weibull function rather than the Hillert distribution. It is also found thatthe grain size and average number of grain sides are not linearly related. The reason that thequasi-steady state grain size distribution deviates from the Hillert distribution may contribute tothe nonlinearity of the relation of the average number of grain sides with the grain size. Theresults also exhibit the reasonability of the relationship deduced by Mullins between the grain sizedistribution and the average number of grain sides.展开更多
The microstructure-dependent corrosion resistance of dual structured fine-grained Mg-7.5 Li-3 Al-lZn has been investigated.The alloys were extruded using extrusion with a forward-backward rotating die(KoBo,a newly dev...The microstructure-dependent corrosion resistance of dual structured fine-grained Mg-7.5 Li-3 Al-lZn has been investigated.The alloys were extruded using extrusion with a forward-backward rotating die(KoBo,a newly developed SPD method)at two different extrusion ratios.The fine-grained microstructures formed in the alloys were characterized,and the influence of grain refinement on corrosion resistance was analyzed.For fine-grained(α+β)Mg-Li alloys,a higher extrusion ratio led to more intensive grain refinement;however,this relationship did not improve their corrosion resistance in a chloride-containing solution.The corrosion resistance of the alloys was mainly controlled by the refinement ofα(Mg)andβ(Li),along with the distribution of second phases.The presence of MgLi_(2) Al at grain boundaries facilitated their dissolution.展开更多
Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the natural ...Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the natural marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same ratios of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consolidated compression shear tests with simulated in-situ confined pressure give results much better than those of uncomfined compression shear tests.展开更多
In this paper,a distribution map of gravelly soil liquefaction that was caused by the Wenchuan M8.0 earthquake in China is proposed based on a detailed field investigation and an analysis of geological soil profiles. ...In this paper,a distribution map of gravelly soil liquefaction that was caused by the Wenchuan M8.0 earthquake in China is proposed based on a detailed field investigation and an analysis of geological soil profiles. The geological background of the earthquake disaster region is summarized by compiling geological cross sections and borehole logs. Meanwhile,four typical liquefied sites were selected to conduct sample drillings,dynamic penetration tests (DPT),and shear wave velocity tests,to understand the features of liquefied gravelly soil. One hundred and eighteen (118) liquefied sites were investigated shortly after the earthquake. The field investigation showed:(1) sandboils and waterspouts occurred extensively,involving thousands of miles of farmland,120 villages,eight schools and five factories,which caused damage to some rural houses,schools,manufacturing facilities and wells,etc.; (2) the Chengdu plain is covered by a gravelly soil layer with a thickness of 0 m to 541 m according to the geological cross sections; (3) there were 80 gravelly soil liquefied sites in the Chengdu plain,shaped as five belt areas that varied from 20 km to 40 km in length,and about ten gravelly soil liquefied sites distributed within Mianyang area; and (4) the grain sizes of the sampled soil were relative larger than the ejected soil on the ground,thus the type of liquefied soil cannot be determined by the ejected soil. The gravelly soil liquefied sites are helpful in enriching the global database of gravelly soil liquefaction and developing a corresponding evaluation method in further research efforts.展开更多
Six typical red clay profiles were sampled from Tangxi (TX), Langyaz (LYZ), South Shangshanwen (SSW), Xianqiao (XQ), Qijian (Q J) and Huhaitang (HHT) of Jinhua-Quzhou Basin, Zhejiang Province of China to e...Six typical red clay profiles were sampled from Tangxi (TX), Langyaz (LYZ), South Shangshanwen (SSW), Xianqiao (XQ), Qijian (Q J) and Huhaitang (HHT) of Jinhua-Quzhou Basin, Zhejiang Province of China to evaluate the characteristics of grain size composition, distribution and parameters of red clays and to reveal the origin of red clays and interpret possible implications for paleoclimate in subtropical China. The results showed that red clays in TX, LYZ and SSW were fine and uniform, with no 〉 2 mm gravels and little 〉 63μm fraction. They had a high content of 10-50 μm fraction, so-called "basic dust fraction", and showed unimodal distributions, which were very comparable to those of the Xiashu Loess in southeastern China and the loess in North China. All these features reflected marked aeolian characteristics of the red clays in these areas. Red clays in XQ and QJ were much coarser than those in TjjX, LYZ and SSW, with high contents of 〉 63μm fraction and even containing 〉 2 mm gravels in some layers. The grain size distribution patterns showed significantly progressive trends from the lower profile to the upmost layer and could not be compared with those of the loess in North China or the Xiashu Loess, implying they might be derived from underlying parent rocks and had some inherited properties from bedrock. Red clays in HHT had high contents of 〉 63μm fraetion and contain many 〉 2 mm gravels in each layer. The grain size frequency curves showed multiple-peaks and some abrupt variations were also observed on the profile, revealing its alluvial or diluvial origin in HHT. The multiple origins of red clays reflected the diversity and complexity of the Quaternary environment in South China. It can be concluded that grain size is an effective proxy indicator for the origin of most deposits.展开更多
A framework of continuum breakage mechanics was used to investigate the dependence of compressibility on grain size distribution(GSD)as well as relative density of sand.Compressibility dependence on GSD was considered...A framework of continuum breakage mechanics was used to investigate the dependence of compressibility on grain size distribution(GSD)as well as relative density of sand.Compressibility dependence on GSD was considered by employing a GSD index and relative density dependence was reflected by varying the plastic-breakage coupling angle.Simulations of the experimental results including isotropic compression and one-dimensional compression of sands with different relative densities and GSDs revealed that sand compressibility increased with the increasing GSD index and plastic-breakage coupling angle.The coupling angle decreased with increasing relative density,indicating that grains would break more in sand with comparatively high relative density.展开更多
This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision,by a number of drum tests on granular materials(silica sand No.3 and ceramic balls)to investigate th...This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision,by a number of drum tests on granular materials(silica sand No.3 and ceramic balls)to investigate the characteristics of particle breakage and its effect on the characteristics of grain size distribution of sand.Particle breakage increased in up convexity with increasing duration of drum tests,but increased linearly with increasing number of balls.Particle breakage showed an increase,followed by a decrease while increasing the amount of sand.There may be existence of a characteristic amount of sand causing a maximum particle breakage.Friction tests caused much less particle breakage than collision tests did.Friction and collision resulted in different mechanisms of particle breakage,mainly by abrasion for friction and by splitting for collision.The fines content increased with increasing relative breakage.Particle breakage in the friction tests(abrasion)resulted in a sharper increase but with a smaller total amount of fines content in comparison with that in the collision tests(splitting).For the collision tests,the fines content showed a decrease followed by an increase as the amount of sand increased,whereas it increased in up convexity with increasing number of balls.The characteristic grain sizes D_(10) and D_(30) decreased in down convexity with increasing relative breakage,which could be described by a natural exponential function.However,the characteristic grain sizes D50 and D60 decreased linearly while increasing the relative breakage.In addition,the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage.展开更多
The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on fo...The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on four different rock samples namely marble,dolomite,limestone and granite which were representatively selected from fragmented lumps in quarries.Unconfined compressive strength and Point load tests were carried out on each rock sample as well as crushing time and size analysis.The results of the strength parameters of each sample were correlated with the crushing time and the grain size distribution of the rock types.The results of the strength tests show that granite has the highest mean value of 101.67 MPa for Unconfined Compressive Strength(UCS) test,6.43 MPa for Point Load test while dolomite has the least mean value of 30.56 MPa for UCS test and 0.95 MPa for Point Load test.According to the International Society for Rock Mechanic(ISRM) standard,the granite rock sample may be classified as having very high strength and dolomite rock sample,low strength.Also,the granite rock has the highest crushing time(21.0 s) and dolomite rock has the least value(5.0 s).Based on the results of the investigation,it was found out that there is a great influence of strength properties on crushing time of rock types.展开更多
Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the veget...Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boundaries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often "environmentally sensitive" to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, although the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth and δ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.展开更多
文摘A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions were studied by grain growth simulation.It is found that the cross-track-averaged magnetization changes little between the L1_(0)FePt medium with uniform or non-uniform grain size distribution.
基金supports of the National Key Research and Development Plan(Grant Nos.2016YFB0701201 and 2016YFB0301103)the National Natural Science Foundation of China(Grant Nos.51771109 and 51631006).
文摘The Mg-Gd-Y-Zn-Zr alloys are representational and potential age-hardening systems as reported in the past ten years,but their mechanical properties are still dependent on the grain size and its distribution.The effect of bimodal structure on mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions was investigated.The results suggested that the volume fraction of fine grain(FG)and coarse grain(CG)could be controlled by combined processes of hot forging,extrusion and annealing.And for the present alloys with bimodal grain size distribution,the improvement of strength is still attributed to the grain refinement.The morphology of bimodal grain size distribution has a marked impact on the ductility of the alloy,i.e.with the increase of coarse grain volume fraction,the elongation to failure increases at the beginning and then decreases.The mechanism of the toughening effect of bimodal grain size distribution on the Mg-Gd-Y-Zn-Zr alloys with bimodal grain size structure has been discussed.
文摘Most of the available methods for the calculation of the three dimensional(3D)grain size dis- tribution functions(SDF)are based on the S model and lead a grave systematical error.The origin is the basic supposition of spherical grains in the S model,which does not correspond with the feature of real grains.A new model called A model is developed based on the hypothe- sis of polvhedral grains.The probability functions of the A model and the method to calculate the 3D SDFs using the A model are given in the present paper.The theoretical analyses and experimental tests have demonstrated that the A model reduces the systematical error radical- ly.It is nearly as simple as the so far used S model,but gives much better results in repro- ducing of 3D SDFs from the measured ID or 2D SDFs.
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.
文摘In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement from a starting size of 16.4±6.8µm to 3.2±1.2µm was attained after FSP.Remarkably,bimodal grain size distribution was observed in the nugget zone with a combination of coarse(11.62±8.4µm)and fine grains(3.2±1.2µm).Due to the grain refinement,a slight improvement in the hardness was found in the nugget zone of FSPed AZ31.The bimodal grain size distribution in the stir zone showed pronounced influence on the corrosion rate of FSPed AZ31 as observed from the immersion and electrochemical tests.From the X-ray diffraction analysis,more amount of Mg(OH)_(2) was observed on FSPed AZ31 compared with the unprocessed AZ31.Polarization measurements demonstrated the higher corrosion current density for FSPed AZ31(8.92×10^(−5)A/cm^(2))compared with the unprocessed condition(2.90×10^(−5)A/cm^(2))that can be attributed to the texture effect and large variations in the grain size which led to non-uniform galvanic intensities.
基金supported by the National Basic Research Program of China (2009CB825105)
文摘The grain size composition, distribution characteristics and spatial variation of eolian sand soil on distinct positions across two longitudinal dunes and interdune areas were studied by means of conventional grain size analysis and geostatistical methods. In the study, 184 samples of eolian sand soil from the 0-30cm layer were systemically collected and measured from two longitudinal dunes and interdunes in the southern Gurbantunggut Desert. The results show that the dominant grain sizes are fine and very fine sands, and the differences of grain size compositions between the distinct geomorphologic positions are significant. The contents of clay and silt are highest on the interdune areas and lowest on the crests, and higher on the leeward slopes than on the windward slopes. The contents of very fine and fine sands are highest on the windward slopes and lowest on the crests. The contents of medium, coarse and very coarse sands are lowest on the interdune lands, and highest on the crests, and are identical on the two slopes. The coarser sizes (phi(1)) and mean sizes (Mz) for eolian sand soil all have a varying tendency from fine to coarse sizes with interdune area -> leeward slope -> windward slope -> crest, and the sorting (sigma) are poorly to well sorted. The results of geostatistical analysis reveal that phi(1), Mz and a values are moderately to strongly spatially autocorrelated. The values of the spatially correlated ranges are phi(1) < sigma < Mz. The spatial variation for these grain size parameters is significant across the longitudinal dune landscape. From the crests towards the bottom of the slope, there is a varying gradient of zonal distribution, and the gradient values on the leeward slopes are larger than sites on the windward slopes.
基金supported by the National Natural Science Foundation of China (No.50671010)
文摘Three-dimensional normal grain growth was appropriately simulated using a Potts model Monte Carlo algorithm. The quasi-stationary grain size distribution obtained from simulation agreed well with the experimental result of pure iron. The Weibull function with a parameter β=2.77 and the Yu-Liu function with a parameter v =2.71 fit the quasi-stationary grain size distribution well. The grain volume distribution is a function that decreased exponentially with increasing grain volume. The distribution of boundary area of grains has a peak at S/〈S〉=0.5, where S is the boundary area of a grain and 〈S〉 is the mean boundary area of all grains in the system. The lognormal function fits the face number distribution well and the peak of the face number distribution is f=10. The mean radius off-faced grains is not proportional to the face number, but appears to be related by a curve convex upward. In the 2D cross-section, both the perimeter law and the Aboav-Weaire law are observed to hold.
基金Financial support for the contribution was provided by Grant Agency of the Czech Republic (Project No. GACR P209/11/1000)
文摘This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debris flow). The grain size distribution of forty three soil samples was used to classify the soils according to the scheme of the Unified Soil Classification System(USCS). These distributions have then been used to estimate shear strength and hydraulic properties of the soils. There are clear differences between the soils which reflect their divergent origins. The glacial soils normally fit within one of two distinctive groups according to the proportion of fines(Group A, 7%-21.5%; Group B, 21%-65%). The estimation of shear strength at constant volume friction angle and peak shear strength of the glacial sediments with low content of fines was made using published data relating to the measured shear strength characteristics of soils with similar origins and grain size distributions. The estimated values were supported by measurements of the angle of repose taken from fourteen samples from two moraines and by shear tests on samples from one locality. The results of the grain size distribution werealso used to estimate the average hydraulic conductivity using the empirical Hazen formula which results were verified by field infiltration tests at two localities.
基金supported by the Key Research Program of the Chinese Academy of Sciences (Grant No.KZZD-EW-05-01)the National Natural Science Foundation of China (Grant No. 41471011)the Key Laboratory of Mountain Hazards and Earth Surface Processes,Chinese Academy of Sciences,China
文摘Grain composition of debris flow varies considerably from fluid to deposit, making it uncertain to estimate flow properties (e.g., density, velocity and discharge) using deposit as done in practice. Tracing the variation of grain composition is thus more important than estimating some certain properties of flow because every debris flow event consists of a series of surges that are distinct in properties and flow regimes. We find that the materials of debris flows, both the fluid and the source soils, satisfy a universal grain size distribution (GSD) in a form of P (D) = CD-zexp(-D/Dc), where the parameters C, p and De are determined by fitting the function to the grain size frequency. A small At implies a small porosity and possible high excess pore pressure in flow; and a large D~ means a wide range of grain composition and hence a high sediment concentration. Flow density increases as 11 decreases or Dc increases, in a power law form. A debris flow always achieves a state of certain mobility and density that can be well described by the coupling of p and Dc, which imposes a constraint on the fluctuations of flow surges. The GSD also describes the changes in grain composition in that it is always satisfied during the course of debris flow developing. Numerical simulation using the GSD can well illustrate the variation ofμ and Dc from source soils to deposits.
基金supported by the National Science Foundation of the United States under a research grant (CMMI-1917238)
文摘Determination of the critical state line(CSL)is important to characterize engineering properties of granular soils.Grain size distribution(GSD)has a significant influence on the location of CSL.The influence of particle breakage on the CSL is mainly attributed to the change in GSD due to particle breakage.However,GSD has not been properly considered in modeling the CSL with influence of particle breakage.This study aims to propose a quantitative model to determine the CSL considering the effect of GSD.We hypothesize that the change of critical state void ratio with respect to GSD is caused by the same mechanism that influences of the change of minimum void ratio with respect to GSD.Consequently,the particle packing model for minimum void ratio proposed by Chang et al.(2017)is extended to predict critical state void ratio.The developed model is validated by experimental results of CSLs for several types of granular materials.Then the evolution of GSD due to particle breakage is incorporated into the model.The model is further evaluated using the experimental results on rockfill material,which illustrates the applicability of the model in predicting CSL for granular material with particle breakage.
基金Supported by National Nature Science Foundation of China(Grant 50409012).
文摘Grain size distribution of bed material is an important characteristic for studying evolution of natural river channel by means of experimental ways and numerical modeling of flow and sediment process.In this study,the fractal characteristic of sediment particle has been defined by means of fractal theory based on ana- lyzing the property of grain size distribution of bed material in the river channel.Furthennore,the fractal prop- erty of sediment particle has been applied to judge the process of armorin...
基金This work was supported by the National Natural Science Foundation of China (No.50171008)
文摘Behaviors of the quasi-steady state grain size distribution and thecorresponding topological relationship were investigated using the Potts Monte Carlo method tosimulate the normal grain growth process. The observed quasi-steady state grain size distributioncan be well fit by the Weibull function rather than the Hillert distribution. It is also found thatthe grain size and average number of grain sides are not linearly related. The reason that thequasi-steady state grain size distribution deviates from the Hillert distribution may contribute tothe nonlinearity of the relation of the average number of grain sides with the grain size. Theresults also exhibit the reasonability of the relationship deduced by Mullins between the grain sizedistribution and the average number of grain sides.
文摘The microstructure-dependent corrosion resistance of dual structured fine-grained Mg-7.5 Li-3 Al-lZn has been investigated.The alloys were extruded using extrusion with a forward-backward rotating die(KoBo,a newly developed SPD method)at two different extrusion ratios.The fine-grained microstructures formed in the alloys were characterized,and the influence of grain refinement on corrosion resistance was analyzed.For fine-grained(α+β)Mg-Li alloys,a higher extrusion ratio led to more intensive grain refinement;however,this relationship did not improve their corrosion resistance in a chloride-containing solution.The corrosion resistance of the alloys was mainly controlled by the refinement ofα(Mg)andβ(Li),along with the distribution of second phases.The presence of MgLi_(2) Al at grain boundaries facilitated their dissolution.
基金This research project is financially supported by Jiangsu Transportation Scientific Funds (Grant No. 02Y015)
文摘Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the natural marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same ratios of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consolidated compression shear tests with simulated in-situ confined pressure give results much better than those of uncomfined compression shear tests.
基金Fundamental Research Funds of Institute Engineering Mechanics and Earthquake Under Grant No.2009B01 and No.200708001 National Natural Science Foundation of China Under Grant No.90715017 International Corporation Project of Science and Technology Administration of China Under Grant No.2009DFA71720
文摘In this paper,a distribution map of gravelly soil liquefaction that was caused by the Wenchuan M8.0 earthquake in China is proposed based on a detailed field investigation and an analysis of geological soil profiles. The geological background of the earthquake disaster region is summarized by compiling geological cross sections and borehole logs. Meanwhile,four typical liquefied sites were selected to conduct sample drillings,dynamic penetration tests (DPT),and shear wave velocity tests,to understand the features of liquefied gravelly soil. One hundred and eighteen (118) liquefied sites were investigated shortly after the earthquake. The field investigation showed:(1) sandboils and waterspouts occurred extensively,involving thousands of miles of farmland,120 villages,eight schools and five factories,which caused damage to some rural houses,schools,manufacturing facilities and wells,etc.; (2) the Chengdu plain is covered by a gravelly soil layer with a thickness of 0 m to 541 m according to the geological cross sections; (3) there were 80 gravelly soil liquefied sites in the Chengdu plain,shaped as five belt areas that varied from 20 km to 40 km in length,and about ten gravelly soil liquefied sites distributed within Mianyang area; and (4) the grain sizes of the sampled soil were relative larger than the ejected soil on the ground,thus the type of liquefied soil cannot be determined by the ejected soil. The gravelly soil liquefied sites are helpful in enriching the global database of gravelly soil liquefaction and developing a corresponding evaluation method in further research efforts.
基金Supported by the National Natural Science Foundation of China(Nos.41071002 and 41071142)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ13D010002 and X506313)the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KZCX2-YW-409 and KZCX2-EW-405-1)
文摘Six typical red clay profiles were sampled from Tangxi (TX), Langyaz (LYZ), South Shangshanwen (SSW), Xianqiao (XQ), Qijian (Q J) and Huhaitang (HHT) of Jinhua-Quzhou Basin, Zhejiang Province of China to evaluate the characteristics of grain size composition, distribution and parameters of red clays and to reveal the origin of red clays and interpret possible implications for paleoclimate in subtropical China. The results showed that red clays in TX, LYZ and SSW were fine and uniform, with no 〉 2 mm gravels and little 〉 63μm fraction. They had a high content of 10-50 μm fraction, so-called "basic dust fraction", and showed unimodal distributions, which were very comparable to those of the Xiashu Loess in southeastern China and the loess in North China. All these features reflected marked aeolian characteristics of the red clays in these areas. Red clays in XQ and QJ were much coarser than those in TjjX, LYZ and SSW, with high contents of 〉 63μm fraction and even containing 〉 2 mm gravels in some layers. The grain size distribution patterns showed significantly progressive trends from the lower profile to the upmost layer and could not be compared with those of the loess in North China or the Xiashu Loess, implying they might be derived from underlying parent rocks and had some inherited properties from bedrock. Red clays in HHT had high contents of 〉 63μm fraetion and contain many 〉 2 mm gravels in each layer. The grain size frequency curves showed multiple-peaks and some abrupt variations were also observed on the profile, revealing its alluvial or diluvial origin in HHT. The multiple origins of red clays reflected the diversity and complexity of the Quaternary environment in South China. It can be concluded that grain size is an effective proxy indicator for the origin of most deposits.
基金supported by China Scholarship Council(Grant No.201306710022)
文摘A framework of continuum breakage mechanics was used to investigate the dependence of compressibility on grain size distribution(GSD)as well as relative density of sand.Compressibility dependence on GSD was considered by employing a GSD index and relative density dependence was reflected by varying the plastic-breakage coupling angle.Simulations of the experimental results including isotropic compression and one-dimensional compression of sands with different relative densities and GSDs revealed that sand compressibility increased with the increasing GSD index and plastic-breakage coupling angle.The coupling angle decreased with increasing relative density,indicating that grains would break more in sand with comparatively high relative density.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41807268)the“Belt&Road”International Cooperation Team for the“Light of West”Program of Chinese Academy of Sciences(Lijun Su),China,the Youth Innovation Promotion Association of Chinese Academy of Sciences,China(Grant No.2018408)China Postdoctoral Science Foundation(Grant No.2019T120864).
文摘This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision,by a number of drum tests on granular materials(silica sand No.3 and ceramic balls)to investigate the characteristics of particle breakage and its effect on the characteristics of grain size distribution of sand.Particle breakage increased in up convexity with increasing duration of drum tests,but increased linearly with increasing number of balls.Particle breakage showed an increase,followed by a decrease while increasing the amount of sand.There may be existence of a characteristic amount of sand causing a maximum particle breakage.Friction tests caused much less particle breakage than collision tests did.Friction and collision resulted in different mechanisms of particle breakage,mainly by abrasion for friction and by splitting for collision.The fines content increased with increasing relative breakage.Particle breakage in the friction tests(abrasion)resulted in a sharper increase but with a smaller total amount of fines content in comparison with that in the collision tests(splitting).For the collision tests,the fines content showed a decrease followed by an increase as the amount of sand increased,whereas it increased in up convexity with increasing number of balls.The characteristic grain sizes D_(10) and D_(30) decreased in down convexity with increasing relative breakage,which could be described by a natural exponential function.However,the characteristic grain sizes D50 and D60 decreased linearly while increasing the relative breakage.In addition,the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage.
文摘The influence of rock strength properties on Jaw Crusher performance was carried out to determine the effect of rock strength on crushing time and grain size distribution of the rocks.Investigation was conducted on four different rock samples namely marble,dolomite,limestone and granite which were representatively selected from fragmented lumps in quarries.Unconfined compressive strength and Point load tests were carried out on each rock sample as well as crushing time and size analysis.The results of the strength parameters of each sample were correlated with the crushing time and the grain size distribution of the rock types.The results of the strength tests show that granite has the highest mean value of 101.67 MPa for Unconfined Compressive Strength(UCS) test,6.43 MPa for Point Load test while dolomite has the least mean value of 30.56 MPa for UCS test and 0.95 MPa for Point Load test.According to the International Society for Rock Mechanic(ISRM) standard,the granite rock sample may be classified as having very high strength and dolomite rock sample,low strength.Also,the granite rock has the highest crushing time(21.0 s) and dolomite rock has the least value(5.0 s).Based on the results of the investigation,it was found out that there is a great influence of strength properties on crushing time of rock types.
基金The National Natural Science Foundation of China under contract Nos 41006051 and 41106108the Scientific Research Foundation for Returned Scholars of the Ministry of Education of China+1 种基金the Fundamental Research Funds for the Central Universities under contract No.2652012032the State Key Laboratory of Earth Surface Processes and Resource Ecology under contract No.257-2013-KF-13
文摘Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boundaries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often "environmentally sensitive" to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, although the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth and δ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.