期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Grain Yield Predict Based on GRA-AdaBoost-SVR Model
1
作者 Diantao Hu Cong Zhang +2 位作者 Wenqi Cao Xintao Lv Songwu Xie 《Journal on Big Data》 2021年第2期65-76,共12页
Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper propos... Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper proposes a Grey Relational Analysis-Adaptive Boosting-Support Vector Regression(GRA-AdaBoost-SVR)model,which can ensure the prediction accuracy of the model under small sample,improve the generalization ability,and enhance the prediction accuracy.SVR allows mapping to high-dimensional spaces using kernel functions,good for solving nonlinear problems.Grain yield datasets generally have small sample sizes and many features,making SVR a promising application for grain yield datasets.However,the SVR algorithm’s own problems with the selection of parameters and kernel functions make the model less generalizable.Therefore,the Adaptive Boosting(AdaBoost)algorithm can be used.Using the SVR algorithm as a training method for base learners in the AdaBoost algorithm.Effectively address the generalization capability problem in SVR algorithms.In addition,to address the problem of sensitivity to anomalous samples in the AdaBoost algorithm,the GRA method is used to extract influence factors with higher correlation and reduce the number of anomalous samples.Finally,applying the GRA-AdaBoost-SVR model to grain yield forecasting in China.Experiments were conducted to verify the correctness of the model and to compare the effectiveness of several traditional models applied to the grain yield data.The results show that the GRA-AdaBoost-SVR algorithm improves the prediction accuracy,the model is smoother,and confirms that the model possesses better prediction performance and better generalization ability. 展开更多
关键词 Grey Relational Analysis(GRA) Support Vector Regression(SVR) Adaptive Boosting algorithm(AdaBoost) grain yield prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部