期刊文献+
共找到36,912篇文章
< 1 2 250 >
每页显示 20 50 100
Accurate method based on data filtering for quantitative multi-element analysis of soils using CF-LIBS
1
作者 韩伟伟 孙对兄 +7 位作者 张国鼎 董光辉 崔小娜 申金成 王浩亮 张登红 董晨钟 苏茂根 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期149-158,共10页
To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis o... To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis. 展开更多
关键词 laser-induced breakdown spectroscopy SOIL data filtering quantitative analysis multielement
下载PDF
Quantitative Analysis of Seeing with Height and Time at Muztagh-Ata Site Based on ERA5 Database
2
作者 Xiao-Qi Wu Cun-Ying Xiao +3 位作者 Ali Esamdin Jing Xu Ze-Wei Wang Luo Xiao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第1期87-95,共9页
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal... Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy. 展开更多
关键词 site testing atmospheric effects methods:data analysis telescopes EARTH
下载PDF
Statistical Analysis of Abilities to Give Consent to Health Data Processing
3
作者 Antonella Massari Biagio Solarino +5 位作者 Paola Perchinunno Angela Maria D’Uggento Marcello Benevento Viviana D’Addosio Vittoria Claudia De Nicolò Samuela L’Abbate 《Applied Mathematics》 2024年第8期508-542,共35页
The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every in... The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management. 展开更多
关键词 PRIVACY Health data Consent Cluster analysis LOGIT
下载PDF
Study of inter-well interference in shale gas reservoirs by a robust production data analysis method based on deconvolution
4
作者 Wen-Chao Liu Cheng-Cheng Qiao +5 位作者 Ping Wang Wen-Song Huang Xiang-Wen Kong Yu-Ping Sun He-Dong Sun Yue-Peng Jia 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2502-2519,共18页
In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut... In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells. 展开更多
关键词 Shale gas Inter-well interference DECONVOLUTION Production data analysis Typical curves Multi-stage fractured horizontal well
下载PDF
Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data
5
作者 SangSeok Lee HaeWon Moon Lee Sael 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期319-336,共18页
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form... How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events. 展开更多
关键词 Dynamic decomposition tucker tensor tensor factorization spatiotemporal data tensor analysis air quality
下载PDF
Data-driven analysis of chemicals,proteins and pathways associated with peanut allergy:from molecular networking to biological interpretation
6
作者 Emmanuel Kemmler Julian Braun +5 位作者 Florent Fauchère Sabine Dölle-Bierke Kirsten Beyer Robert Preissner Margitta Worm Priyanka Banerjee 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1322-1335,共14页
Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fis... Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity. 展开更多
关键词 Allergy informatics Knowledge-graph data analysis Food allergy Peroxisome proliferator-activated receptors Fatty acids
下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
7
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
下载PDF
Enhancing Data Analysis and Automation: Integrating Python with Microsoft Excel for Non-Programmers
8
作者 Osama Magdy Ali Mohamed Breik +2 位作者 Tarek Aly Atef Tayh Nour El-Din Raslan Mervat Gheith 《Journal of Software Engineering and Applications》 2024年第6期530-540,共11页
Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision... Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions. 展开更多
关键词 PYTHON End-User Approach Microsoft Excel data analysis Integration SPREADSHEET PROGRAMMING data Visualization
下载PDF
Performance Analysis and Optimization of Energy Harvesting Modulation for Multi-User Integrated Data and Energy Transfer
9
作者 Yizhe Zhao Yanliang Wu +1 位作者 Jie Hu Kun Yang 《China Communications》 SCIE CSCD 2024年第1期148-162,共15页
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ... Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance. 展开更多
关键词 energy harvesting modulation(EHM) integrated data and energy transfer(IDET) performance analysis wireless data transfer(WDT) wireless energy transfer(WET)
下载PDF
Analysis of Urban Agglomeration Network Structure Based on Baidu Migration Data: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Urban Agglomeration
10
作者 XIA Yuan WANG Bin 《Journal of Landscape Research》 2024年第4期47-50,共4页
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ... The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data. 展开更多
关键词 Baidu migration data Social network analysis Urban agglomeration network structure Greater Bay Area urban agglomeration
下载PDF
Comparison of R and Excel in the Field of Data Analysis
11
作者 Jue Wang 《Journal of Electronic Research and Application》 2024年第3期178-184,共7页
This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and i... This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences. 展开更多
关键词 EXCEL R language data analysis Open source COMPARE data management Advantages Disadvantages FUNCTION
下载PDF
Application of Bayesian Analysis Based on Neural Network and Deep Learning in Data Visualization
12
作者 Jiying Yang Qi Long +1 位作者 Xiaoyun Zhu Yuan Yang 《Journal of Electronic Research and Application》 2024年第4期88-93,共6页
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit... This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science. 展开更多
关键词 Neural network Deep learning Bayesian analysis data visualization Big data environment
下载PDF
Exploration of University English Teachers’Acceptance and Willingness to Use Learning Management System Data Analysis Tools
13
作者 Xiaochao Yao 《Journal of Contemporary Educational Research》 2024年第9期120-128,共9页
This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combin... This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching. 展开更多
关键词 Learning management system data analysis tools Technology acceptance University English teachers Educational technology data privacy concerns
下载PDF
Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield
14
作者 Cai Li Fei Ma +1 位作者 Yuxiu Wang Delong Zhang 《Artificial Intelligence in Geosciences》 2024年第1期359-366,共8页
The connectivity of sandbodies is a key constraint to the exploration effectiveness of Bohai A Oilfield.Conventional connectivity studies often use methods such as seismic attribute fusion,while the development of con... The connectivity of sandbodies is a key constraint to the exploration effectiveness of Bohai A Oilfield.Conventional connectivity studies often use methods such as seismic attribute fusion,while the development of contiguous composite sandbodies in this area makes it challenging to characterize connectivity changes with conventional seismic attributes.Aiming at the above problem in the Bohai A Oilfield,this study proposes a big data analysis method based on the Deep Forest algorithm to predict the sandbody connectivity.Firstly,by compiling the abundant exploration and development sandbodies data in the study area,typical sandbodies with reliable connectivity were selected.Then,sensitive seismic attribute were extracted to obtain training samples.Finally,based on the Deep Forest algorithm,mapping model between attribute combinations and sandbody connectivity was established through machine learning.This method achieves the first quantitative determination of the connectivity for continuous composite sandbodies in the Bohai Oilfield.Compared with conventional connectivity discrimination methods such as high-resolution processing and seismic attribute analysis,this method can combine the sandbody characteristics of the study area in the process of machine learning,and jointly judge connectivity by combining multiple seismic attributes.The study results show that this method has high accuracy and timeliness in predicting connectivity for continuous composite sandbodies.Applied to the Bohai A Oilfield,it successfully identified multiple sandbody connectivity relationships and provided strong support for the subsequent exploration potential assessment and well placement optimization.This method also provides a new idea and method for studying sandbody connectivity under similar complex geological conditions. 展开更多
关键词 Continuous sandbody Connectivity prediction Big data analysis Deep forest Machine learning
下载PDF
Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning
15
作者 Abhishek Bajpai Harshita Verma Anita Yadav 《Data Science and Management》 2024年第3期189-196,共8页
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im... The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network. 展开更多
关键词 Wireless sensor network Principal component analysis(PCA) Reinforcement learning data aggregation
下载PDF
Multiple grain-size fraction analysis of heavy minerals and the provenance identification of sediments from the abandoned Huanghe River,eastern China
16
作者 Mengyao WANG Bingfu JIN Jianjun JIA 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期921-935,共15页
The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrita... The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrital grains,provide a reliable provenance-tracing approach.We developed a mineral identification method to analyze the multiple grain-size fraction of sediments,from which the elemental geochemistry of hornblende was used to compare the characteristics of sediments from the Huaihe River and Huanghe(Yellow)River in eastern China.Elements that were statistically identified as being able to discriminate sediment provenance were employed to perform a quantitative analysis of the sources of sediments of the abandoned Huanghe River.Results reveal that the Huaihe River is characterized by a high amphibole content of>60%and that the Huanghe and abandoned Huanghe rivers have greater abundances of limonite and carbonate minerals compared with those of the Huaihe River.The contents of trace elements and rare earth elements in hornblende show that the sediments of the abandoned Huanghe River are similar to those of the Huanghe River but different from those of the Huaihe River.Furthermore,chemical mass balance was used to calculate the relative contributions of different provenances of sediment from the abandoned Huanghe River,and nine trace elements of hornblende were identified as discriminators of provenance.Approximately 2%of the hornblende in the abandoned Huanghe River is derived from the Huaihe River and 98%from the Huanghe River.Considering the proportion of hornblende in the total sediment,it is inferred that the contribution of Huaihe River sediment to the abandoned Huanghe River is approximately 0.5%.This study shows that mineral analysis using multiple grain-size fractions(within the wide range of 1Φto 6Φ)with assessment in elemental geochemistry of hornblende can characterize the provenance of fluvial material in coastal zones. 展开更多
关键词 quantitative provenance analysis heavy mineral multiple grain-size fraction HORNBLENDE elemental geochemistry fluvial sediment the abandoned Huanghe River
下载PDF
Seismic data analysis based on spatial subsets 被引量:2
17
作者 蔡希玲 刘学伟 +2 位作者 李虹 钱宇明 吕英梅 《Applied Geophysics》 SCIE CSCD 2009年第4期384-392,395,共10页
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ... There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information. 展开更多
关键词 spatial subset 3D visualization high density sampling noise attenuation data analysis
下载PDF
Frame Work of Data Envelopment Analysis—A Model to Evaluate the Environmental Efficiency of China'S Industrial Sectors 被引量:24
18
作者 TAO ZHANG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2009年第1期8-13,共6页
Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environ... Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environmental damages caused by industrial pollutants. Methods A data of envelopment analysis (DEA) framework crediting both reduction of pollution outputs and expansion of good outputs was designed as a model to compute environmental efficiency of China's regional industrial systems. Results As shown by the geometric mean of environmental efficiency, if other inputs were made constant and good outputs were not to be improved, the air pollution outputs would have the potential to be decreased by about 60% in the whole China. Conclusion Both environmental and technical efficiencies have the potential to be greatly improved in China, which may provide some advice for policy-makers. 展开更多
关键词 Technical efficiency Environmental efficiency Directional distance function Technical-environmentalefficiency data of envelopment analysis China
下载PDF
Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China 被引量:6
19
作者 Yujie PAN Mingjun WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期160-172,共13页
Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the dat... Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast. 展开更多
关键词 CLOUD analysis radar data ASSIMILATION data ASSIMILATION INTERVAL
下载PDF
Regularized least-squares migration of simultaneous-source seismic data with adaptive singular spectrum analysis 被引量:12
20
作者 Chuang Li Jian-Ping Huang +1 位作者 Zhen-Chun Li Rong-Rong Wang 《Petroleum Science》 SCIE CAS CSCD 2017年第1期61-74,共14页
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of... Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data. 展开更多
关键词 Least-squares migration Adaptive singularspectrum analysis Regularization Blended data
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部