We consider a network composed of an arbitrary number of directed links. We employ a grand canonical partition function to study the statistical averages of the network in equilibrium. The Hamiltonian is composed of t...We consider a network composed of an arbitrary number of directed links. We employ a grand canonical partition function to study the statistical averages of the network in equilibrium. The Hamiltonian is composed of two parts: a “free” Hamiltonian H0 attributing a constant energy E to each link, and an interacting Hamiltonian Hint involving terms quadratic in the number of links. A Gaussian integration leads to a reformulated Hamiltonian, where now the number of links appears linearly. The reformulated Hamiltonian allows obtaining the exact behavior in limiting cases. At high temperatures the system reproduces the behavior of the free model, while at low temperatures the thermodynamic behavior is obtained by using a renormalized chemical potential, μeff = μ + l, where l is the strength of the interaction. We also resort to a mean field approximation, describing accurately the system over the entire range of all dynamical parameters. A detailed Monte-Carlo simulation verifies our theoretical expectations. We indicate that our model may serve as a prototype model to address a number of different systems.展开更多
采用巨正则系综蒙特卡罗(Grand Canonical Ensemble Monte Carlo,GCEMC)方法模拟了不同结构参数(管径和管间距)的单壁碳纳米管在不同操作工况(温度和压力)下的吸附储氢性能。由计算结果发现,在不同管间距的情况下,不同的管径对吸附性能...采用巨正则系综蒙特卡罗(Grand Canonical Ensemble Monte Carlo,GCEMC)方法模拟了不同结构参数(管径和管间距)的单壁碳纳米管在不同操作工况(温度和压力)下的吸附储氢性能。由计算结果发现,在不同管间距的情况下,不同的管径对吸附性能的影响不同:在管间距较小的情况下,吸附储氢重量百分比和体积百分比均随管径的增大而增大;在管间距较大的情况下,吸附储氢的体积百分比却随管径的增大而减小。在不同的操作工况下,存在一个最优的管间距,能使吸附储氢的体积百分比达到最大值。通过模拟,得到77K下最接近DOE能量密度标准的碳纳米管结构参数和操作工况。展开更多
文摘We consider a network composed of an arbitrary number of directed links. We employ a grand canonical partition function to study the statistical averages of the network in equilibrium. The Hamiltonian is composed of two parts: a “free” Hamiltonian H0 attributing a constant energy E to each link, and an interacting Hamiltonian Hint involving terms quadratic in the number of links. A Gaussian integration leads to a reformulated Hamiltonian, where now the number of links appears linearly. The reformulated Hamiltonian allows obtaining the exact behavior in limiting cases. At high temperatures the system reproduces the behavior of the free model, while at low temperatures the thermodynamic behavior is obtained by using a renormalized chemical potential, μeff = μ + l, where l is the strength of the interaction. We also resort to a mean field approximation, describing accurately the system over the entire range of all dynamical parameters. A detailed Monte-Carlo simulation verifies our theoretical expectations. We indicate that our model may serve as a prototype model to address a number of different systems.
文摘采用巨正则系综蒙特卡罗(Grand Canonical Ensemble Monte Carlo,GCEMC)方法模拟了不同结构参数(管径和管间距)的单壁碳纳米管在不同操作工况(温度和压力)下的吸附储氢性能。由计算结果发现,在不同管间距的情况下,不同的管径对吸附性能的影响不同:在管间距较小的情况下,吸附储氢重量百分比和体积百分比均随管径的增大而增大;在管间距较大的情况下,吸附储氢的体积百分比却随管径的增大而减小。在不同的操作工况下,存在一个最优的管间距,能使吸附储氢的体积百分比达到最大值。通过模拟,得到77K下最接近DOE能量密度标准的碳纳米管结构参数和操作工况。