An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave...An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic-the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic-an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic-tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic-destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization.展开更多
Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and...Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton(NCC) are correlated to the amalgamation of microblocks welded by 2.75-2.6 Ga and ~2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks(basalt and dacite) interlayered with minor komatiites and calc-alkalic volcanic rocks(basalt, andesite and felsic rock). The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE(K,Rb, Sr, Ba) and LREE, and depletion of HFSE(Nb, Ta, Th, U, Ti) and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these,together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75-2.60 Ga TTG rocks,komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcanosedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60-2.48 Ga, followed by metamorphism at 2.52-2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite(Dongwufenzi GGB), sanukitoid(Dongwufenzi GGB and Western Shandong GGB), BIF(Zunhua GGB) and VMS deposit(Hongtoushan-Qingyuan-Helong GGB) have closer connection to a combined process of oceanic slab subduction and mantle plume. The Neoarchean cratonization of the NCC appears to have involved two stages of tectonic process along the 2.75-2.6 Ga GGB and ~2.5 Ga GGBs, the former involve plume-arc interaction process, and the latter involving oceanic lithospheric subduction, with or without arcplume interaction.展开更多
The North China Craton (NCC) is the largest and oldest one among the worldwide cratons. It preserves important imprints of the Earth's early history, including crust formation, stabilization and reworking. The Yins...The North China Craton (NCC) is the largest and oldest one among the worldwide cratons. It preserves important imprints of the Earth's early history, including crust formation, stabilization and reworking. The Yinshan Block (YB) constitutes the northwestern part of NCC, and contains extensive exposure of Archean rocks (Fig. 1).展开更多
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv...With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.展开更多
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
The Earth's electron radiation belts typically exhibit a two-belt structure.However,observations from the Van Allen Probes revealed the existence of a three-belt structure.This structure consists of an inner belt,...The Earth's electron radiation belts typically exhibit a two-belt structure.However,observations from the Van Allen Probes revealed the existence of a three-belt structure.This structure consists of an inner belt,a slot region,a remnant belt,a“second slot,”and a new outer belt(or the“third belt”).The formation of the structure involves both the partial loss of the original outer belts and the formation of the third belts.These processes are likely associated with radial diffusion induced by ultra-low-frequency(ULF)waves.In this study,we mainly analyzed electron flux data from medium Earth orbit(MEO)navigation satellites M17–M19 to supplement the observational evidence for the sub-relativistic electron(~100–500 keV)three-belt structure.Evidence of substorm injections and ULF waves during the three-belt event was identified,suggesting they played significant roles in the formation and evolution of the third belt.Substorm injections may introduce new electron populations to the third belt,whereas ULF waves may influence the evolution of the third belt through radial diffusion.Toward the end of the three-belt event,the compression of the magnetosphere by shocks may lead to the dropout of the third belt because of the magnetopause shadowing effect and outward radial diffusion,ultimately disrupting the three-belt structure.This study provides more evidence for the presence of a sub-relativistic electron three-belt structure and offers an analysis of the evolutionary mechanisms of the third belt,which may contribute to a comprehensive understanding of the electron three-belt structure in the radiation belts.展开更多
The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassi...The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.展开更多
A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission...A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission would use a constellation of small/CubeSats to take an ultra-fast survey of the Earth’s radiation belt.The concept,science objectives and preliminary technical design of CORBES are introduced.This mission is an international multilateral cooperation mission coordinated by COSPAR.The SGRB Science Activities and COSPAR HQs Coordinate Activities on CORBES are summaried.展开更多
The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa di...The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.展开更多
Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and sy...Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.展开更多
Since the late Cenozoic,the reactivated Tianshan orogenic belt has accommodated crustal shortening exceeding 200 km,primarily due to the far-field effects of the India-Eurasia plate collision.However,the details of th...Since the late Cenozoic,the reactivated Tianshan orogenic belt has accommodated crustal shortening exceeding 200 km,primarily due to the far-field effects of the India-Eurasia plate collision.However,the details of the strain partitioning in the Tianshan Mountain range remain elusive.We interpret a new compilation of GPS velocities covering the whole Tianshan range with a classic elastic block model.Compared to previous studies with a block modeling approach,the Tianshan orogenic belt is further subdivided into several blocks based on geological fault traces and a clustering analysis approach.In addition to obvious crustal shortening on the bounding thrust faults of the Tianshan,our inverted fault slip rates also reveal that faults within the Tianshan orogenic belt,such as the Nalati Fault and the southern margin of the Issyk-Kul Lake Fault,which plays a crucial role in accommodating the tectonic crustal shortening.In the 72°E-78°E region,the internal shortening rate within the mountain is approximately 5-7 mm/yr.Besides crustal shortening,strike-slip motion occurs on faults in the interior of the mountain range as well as in the foreland fold-and-thrust belts,especially in the southern margin of the Tianshan.These findings suggest that the crustal deformation in the Tianshan Mountain range is more complex than previously thought,and the oblique convergence between the Tarim Basin and the Tianshan probably results in both strike-slip and thrust motion.展开更多
This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer...This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.展开更多
Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identifi...Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.展开更多
The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition ...The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).展开更多
The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed...The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed by orogenic domain,namely the North-east Arunachal Himalayas.The river system that gave rise to the Brahmaputra River(Yarlung-Tsangpo),which flowed through several tectonic domains of the Himalayan ranges,primarily from BomiChayu,Gangadese Granitoid,Higher Himalayan Leucogranites,and Namche Barwa into the proto Bengal Basin now a part of Assam Arakan Basin and Naga Schuppen Belt,was the main source of the sandstone formation of the Barail Group.The purpose of sandstone petrography,which combines modal analysis with XRF(Major Oxides)and HR-ICPMS(Trace&Rare Earth Elements)research,is to identify the type of source rock(s),their weathering pattern,and its paleo-environmental circumstances.These sandstones were formed from recycled orogen and include lithic and sublithic arenite variants with advanced texture and chemical maturity.The sediments were felsic(Th/Co:1.38,Cr/Th:9.78,La/Lu:11.58,Th/Sc:0.99,Eu/Eu*:0.66,La/Sc:3.05,La/Co:4.18),with contributions from intermediate source rocks and low-rank metamorphics deposited in an active continental margin to a continental island arc setting.Climatic conditions impacted the sediments of Barails,characterised by being warm and semi-humid to humid which resulted in moderate to a high degree of chemical weathering,as shown by weathering indices like CIA(79.14),PIA(85.47),CIW(86.9),WIP(32.50),ICV(0.71),and Th/U(6.03),which were further additionally supported by C-Value(1.01),PF(1.20),Sr/Cu(2.04),and Rb/Sr(0.97).展开更多
The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavo...The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.展开更多
Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace ...Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.展开更多
Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential...Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.展开更多
Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional foo...Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional food security and environmental protection.Yangtze River Economic Belt(YREB),an important grain production base where SpF concentrated in China,is also faced with serious soil erosion.However,research at the macro scale on the spatiotemporal change of SpF and its driving forces in YREB is still lacking.To bridge the gap,we first analyzed the long-term evolution characteristics of SpF in 1069 counties in the YREB and then explored the driving mechanism of SpF changes during 1980-2020.Results showed that the SpF in the YREB continuously decreased during the study period,with a total area decreasing by 26,300 km2.SpF was primarily concentrated in the upper reaches of the YREB while SpF use dynamic degree varied significantly with the most active change in the lower reaches,reaching to a maximum of 0.324%.The spatial gravity of SpF distribution relocated 20.15 km towards the southwest.As for the driving factors,the socioeconomic factors contributed greater to SpF changes in the whole YREB and its subregions.The intensity of human activities is the most crucial,with factor contribution rate constantly above 0.76.The interactive detection revealed that the prevailing interaction format was primarily bi-enhanced,supplemented with nonlinear-enhanced,which amplified the role of different factors after interacting with them.The pair-wise interaction involving socioeconomic factors had a more potential effect on SpF changes compared to those between physical geography and locational factors.The influence of the intensity of human activities on SpF changes is greatly enhanced after interacting with any factor.It dominated SpF changes in the YREB and its interaction with GDP played an important role at all times.These findings can enlighten differential management strategies of SpF use and ecological conservation in the YREB.展开更多
基金This study is supported jointly by the National Natural Science Foundation of China(No.40172036)"the Key Project of Science and Technology Research"(No.01037)+1 种基金the“Trans-century Training Program for Outstanding Talents”Fund sponsored by the Ministry of Educationthe National Important Basic Research and Development Planning Program(No.1999043206).
文摘An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic-the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic-an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic-tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic-destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization.
基金jointly supported through the Foreign Expert grant from China University of Geosciences(Beijing)the Professorial position at the University of Adelaide, Australia to M.Santosh
文摘Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton(NCC) are correlated to the amalgamation of microblocks welded by 2.75-2.6 Ga and ~2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks(basalt and dacite) interlayered with minor komatiites and calc-alkalic volcanic rocks(basalt, andesite and felsic rock). The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE(K,Rb, Sr, Ba) and LREE, and depletion of HFSE(Nb, Ta, Th, U, Ti) and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these,together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75-2.60 Ga TTG rocks,komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcanosedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60-2.48 Ga, followed by metamorphism at 2.52-2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite(Dongwufenzi GGB), sanukitoid(Dongwufenzi GGB and Western Shandong GGB), BIF(Zunhua GGB) and VMS deposit(Hongtoushan-Qingyuan-Helong GGB) have closer connection to a combined process of oceanic slab subduction and mantle plume. The Neoarchean cratonization of the NCC appears to have involved two stages of tectonic process along the 2.75-2.6 Ga GGB and ~2.5 Ga GGBs, the former involve plume-arc interaction process, and the latter involving oceanic lithospheric subduction, with or without arcplume interaction.
基金financially supported by the Natural Science Foundation of China(grants No.41572174 and 41202138)
文摘The North China Craton (NCC) is the largest and oldest one among the worldwide cratons. It preserves important imprints of the Earth's early history, including crust formation, stabilization and reworking. The Yinshan Block (YB) constitutes the northwestern part of NCC, and contains extensive exposure of Archean rocks (Fig. 1).
基金the financial support from the National Natural Science Foundation of China(71934004)Key Projects of the National Social Science Foundation(23AZD065)the Project of the CNOOC Energy Economics Institute(EEI-2022-IESA0009)。
文摘With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金supported by the National Natural Science Foundation of China(Grant No.42274225)。
文摘The Earth's electron radiation belts typically exhibit a two-belt structure.However,observations from the Van Allen Probes revealed the existence of a three-belt structure.This structure consists of an inner belt,a slot region,a remnant belt,a“second slot,”and a new outer belt(or the“third belt”).The formation of the structure involves both the partial loss of the original outer belts and the formation of the third belts.These processes are likely associated with radial diffusion induced by ultra-low-frequency(ULF)waves.In this study,we mainly analyzed electron flux data from medium Earth orbit(MEO)navigation satellites M17–M19 to supplement the observational evidence for the sub-relativistic electron(~100–500 keV)three-belt structure.Evidence of substorm injections and ULF waves during the three-belt event was identified,suggesting they played significant roles in the formation and evolution of the third belt.Substorm injections may introduce new electron populations to the third belt,whereas ULF waves may influence the evolution of the third belt through radial diffusion.Toward the end of the three-belt event,the compression of the magnetosphere by shocks may lead to the dropout of the third belt because of the magnetopause shadowing effect and outward radial diffusion,ultimately disrupting the three-belt structure.This study provides more evidence for the presence of a sub-relativistic electron three-belt structure and offers an analysis of the evolutionary mechanisms of the third belt,which may contribute to a comprehensive understanding of the electron three-belt structure in the radiation belts.
基金supported by the National Natural Science Foundation Program of China(42102095,42362013,42363009)the Jiangxi Provincial Natural Science Foundation(20224BAB203036,20224BAB213040,20224ACB203008)the Open Research Fund Program of State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(2022NRE12).
文摘The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.
文摘A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission would use a constellation of small/CubeSats to take an ultra-fast survey of the Earth’s radiation belt.The concept,science objectives and preliminary technical design of CORBES are introduced.This mission is an international multilateral cooperation mission coordinated by COSPAR.The SGRB Science Activities and COSPAR HQs Coordinate Activities on CORBES are summaried.
基金the National Natural Science Foundation of China(Grant Nos.42188101,42025404,41974186,42174188,and 42204160)the National Key R&D Program of China(Grant No.2022YFF0503700)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the Fundamental Research Funds for the Central Universities(Grant Nos.2042022kf1016 and 2042023kf1025)the China Postdoctoral Science Foundation(Grant No.2022M722447)。
文摘The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.
基金funded by Gansu Provincial Natural Science Foundation (Grant Numbers 21JR7RA503 and22JR5RA819)the Fundamental Research Funds for the Central Universities (Grant lzujbky-2021-ct07)+1 种基金the Key Talent Project of Gansu Province (2022-Yangzhenxi)the National Second Expedition to the Tibetan Plateau (2019QZKK0704)。
文摘Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.
基金supported by Key R&D Program of Xinjiang Uygur Autonomous Region (2020B03006-2)National Key R&D Program of China (2022YFC3003703)+1 种基金Open Fund of Wuhan,Gravitation and Solid Earth Tides (WHYWZ202215)National Observation and Research Station and State Key Laboratory of Geodesy and Earth's Dynamics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences (SKLGED2023-2-5)。
文摘Since the late Cenozoic,the reactivated Tianshan orogenic belt has accommodated crustal shortening exceeding 200 km,primarily due to the far-field effects of the India-Eurasia plate collision.However,the details of the strain partitioning in the Tianshan Mountain range remain elusive.We interpret a new compilation of GPS velocities covering the whole Tianshan range with a classic elastic block model.Compared to previous studies with a block modeling approach,the Tianshan orogenic belt is further subdivided into several blocks based on geological fault traces and a clustering analysis approach.In addition to obvious crustal shortening on the bounding thrust faults of the Tianshan,our inverted fault slip rates also reveal that faults within the Tianshan orogenic belt,such as the Nalati Fault and the southern margin of the Issyk-Kul Lake Fault,which plays a crucial role in accommodating the tectonic crustal shortening.In the 72°E-78°E region,the internal shortening rate within the mountain is approximately 5-7 mm/yr.Besides crustal shortening,strike-slip motion occurs on faults in the interior of the mountain range as well as in the foreland fold-and-thrust belts,especially in the southern margin of the Tianshan.These findings suggest that the crustal deformation in the Tianshan Mountain range is more complex than previously thought,and the oblique convergence between the Tarim Basin and the Tianshan probably results in both strike-slip and thrust motion.
基金jointly supported by the China National Science Foundation under Grant Nos.41875172 and 42075192。
文摘This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD055)the Taishan Scholars(Grant No.tstp 20231214)the National Natural Science Foundation of China(Grant No.42372247).
文摘Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.
基金This study was fi nancially supported by the Youth Science and Technology Talent Recruitment Project of Gansu Province(2022-19)Technological Innovation Project of Gansu Provincial Department of Natural Resources(2022-3,2022-4,2022-28)+2 种基金National Natural Science Foundation of China(Nos.42073059 and 42303034)Outstanding Youth Fund of Anhui Provincial Department of Education(No.2022AH020084)Doctoral Startup Foundation of Suzhou University(2021BSK038)。
文摘The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).
基金Financial Support to conduct the Geochemical Analysis in NGRIHyderabad under the Project Contract No.6111264。
文摘The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed by orogenic domain,namely the North-east Arunachal Himalayas.The river system that gave rise to the Brahmaputra River(Yarlung-Tsangpo),which flowed through several tectonic domains of the Himalayan ranges,primarily from BomiChayu,Gangadese Granitoid,Higher Himalayan Leucogranites,and Namche Barwa into the proto Bengal Basin now a part of Assam Arakan Basin and Naga Schuppen Belt,was the main source of the sandstone formation of the Barail Group.The purpose of sandstone petrography,which combines modal analysis with XRF(Major Oxides)and HR-ICPMS(Trace&Rare Earth Elements)research,is to identify the type of source rock(s),their weathering pattern,and its paleo-environmental circumstances.These sandstones were formed from recycled orogen and include lithic and sublithic arenite variants with advanced texture and chemical maturity.The sediments were felsic(Th/Co:1.38,Cr/Th:9.78,La/Lu:11.58,Th/Sc:0.99,Eu/Eu*:0.66,La/Sc:3.05,La/Co:4.18),with contributions from intermediate source rocks and low-rank metamorphics deposited in an active continental margin to a continental island arc setting.Climatic conditions impacted the sediments of Barails,characterised by being warm and semi-humid to humid which resulted in moderate to a high degree of chemical weathering,as shown by weathering indices like CIA(79.14),PIA(85.47),CIW(86.9),WIP(32.50),ICV(0.71),and Th/U(6.03),which were further additionally supported by C-Value(1.01),PF(1.20),Sr/Cu(2.04),and Rb/Sr(0.97).
文摘The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.JKYZD202316)+2 种基金the National Natural Science Foundation of China(Grant Nos.42272093,42230813,42002097)the Research Project of the Shengyuan Mining Co.,Ltd.,Tibet(Grant No.XZSYKYJT-JSFW2019-001)the China Scholarship Council project and the Geological Survey project(Grant Nos.DD20230054,DD20221684,DD20221690,DD20230031,DD20230049,DD20230338)。
文摘Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.
文摘Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.
基金funded by the grants from the National Natural Science Foundation of China(42230113,42101415)Ministry of Education of Humanities and Social Science Project(21YJCZH181)supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02).
文摘Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional food security and environmental protection.Yangtze River Economic Belt(YREB),an important grain production base where SpF concentrated in China,is also faced with serious soil erosion.However,research at the macro scale on the spatiotemporal change of SpF and its driving forces in YREB is still lacking.To bridge the gap,we first analyzed the long-term evolution characteristics of SpF in 1069 counties in the YREB and then explored the driving mechanism of SpF changes during 1980-2020.Results showed that the SpF in the YREB continuously decreased during the study period,with a total area decreasing by 26,300 km2.SpF was primarily concentrated in the upper reaches of the YREB while SpF use dynamic degree varied significantly with the most active change in the lower reaches,reaching to a maximum of 0.324%.The spatial gravity of SpF distribution relocated 20.15 km towards the southwest.As for the driving factors,the socioeconomic factors contributed greater to SpF changes in the whole YREB and its subregions.The intensity of human activities is the most crucial,with factor contribution rate constantly above 0.76.The interactive detection revealed that the prevailing interaction format was primarily bi-enhanced,supplemented with nonlinear-enhanced,which amplified the role of different factors after interacting with them.The pair-wise interaction involving socioeconomic factors had a more potential effect on SpF changes compared to those between physical geography and locational factors.The influence of the intensity of human activities on SpF changes is greatly enhanced after interacting with any factor.It dominated SpF changes in the YREB and its interaction with GDP played an important role at all times.These findings can enlighten differential management strategies of SpF use and ecological conservation in the YREB.