From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics i...From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure.展开更多
The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key pro...The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.展开更多
High-Sr/Y granitic rocks,characterized by intermediate–high SiO2 contents(>56 wt.%),high La/Yb ratios(>20),and low Y(<18 ppm)and Yb(<1.9 ppm)contents,have drawn much attention from geologists in the past ...High-Sr/Y granitic rocks,characterized by intermediate–high SiO2 contents(>56 wt.%),high La/Yb ratios(>20),and low Y(<18 ppm)and Yb(<1.9 ppm)contents,have drawn much attention from geologists in the past decades.They were originally named adakites and defined as granitic magma in convergent plate margins formed by partial melting of subducted young(<25 Ma),hot,and hydrated oceanic slab.Recent studies suggest that these rocks can also be formed in a variety of non-subduction-related tectonic settings through different petrogenetic processes including partial melting of thickened lower continental crust,providing important constraints on crustal growth and evolution throughout the Earth’s history.The Tibetan plateau,generally considered as an archetype of collisional orogen,was formed by the successive accretion of different tectonic terranes to the southern margin of the Eurasia plates since the Early Paleozoic.Geologically,the Tibetan plateau comprises several W–E trending terranes(the Kunlun,North Qiangtang,South Qiangtang,and Lhasa terranes)and northernmost India(the Himalaya region).These terranes have undergone significant crustal thickening during the continental collision events.The crustal thickness of the Tibetan plateau is asymmetric,being thickest under the Lhasa terrane and thinning more gradually towards the north than to the south.From south to north,the crustal thickness increases from^50 km in the Himalaya region,to^70–80 km under the Lhasa terrane,and decreases to^65 km under the North and South Qiangtang terranes and^55 km beneath the Kunlun terrane.The present crustal thickness of the Tibetan plateau has generally been attributed to the Cenozoic collision between the Indian and Eurasian plates and the subsequent intracontinental convergences since^55 Ma.However,doubts were raised about this interpretion in the past few years.For example,recent studies indicated the crust of the Lhasa terrane had been significantly thickened during ca.140–130 Ma in response to the subduction of the Neo-Tethyan Ocean,although the Cretaceous marine strata across the Lhasa terrane demonstrates that it was thin enough to be within the reach of sea level during at least the early Late Cretacous.Whether the South Qiangtang terrane underwent crustal thickening before Cenozoic or not remains an unanswered question.In this study,new zircon U–Pb geochronologic and Hfisotopic,and whole-rock geochemical data of the Late Cretaceous high-Sr/Y granitoids from the eastern South Qiangtang terrane are presented.LA–ICP–MS zircon U–Pb dating produced ages(92.0±1.1 Ma,88.8±0.7 Ma,and 91.5±0.6 Ma)of formation for the Leiwuqi granitoids of the South Qiangtang terrane,Tibetan Plateau,indicating that they were formed during the Late Cretaceous.The granitoids have low A/CNK ratios(0.94–1.06;<1.10)and P2O5 contents(0.02–0.12 wt.%),geochemically similar to I-type granitoids.They are characterized by high Sr(350–938 ppm,most>400 ppm),low Y(5.94–9.67 ppm),with high Sr/Y(36–119,most>40)and(La/Yb)N ratios(67–394).They exhibit negative zirconεHf(t)values(–9.8 to–1.1)and low MgO(0.32–0.69 wt.%),Cr(2.07–12.17 ppm),and Ni(1.10–5.94 ppm)contents.These features suggest that the granitoids probably were derived from partial melting of thickened lower continental crust(>50 km).The crust of the South Qiangtang terrane(at least its eastern part)may have been significantly thickened before the Late Cretaceous.展开更多
Objective The research area is located in the north of the Xing'an block and within the Ali River-Zhalantun granite belt in the eastern part of the Xingmeng orogenic belt. The geotectonic setting and geological evol...Objective The research area is located in the north of the Xing'an block and within the Ali River-Zhalantun granite belt in the eastern part of the Xingmeng orogenic belt. The geotectonic setting and geological evolution history of this area are complex with strong magmatic activity and extremely developed granite rocks. Since predecessors have not obtained accurate dating result, there is much controversy over the formation of granitic rocks. Therefore, this work conducted zircon U-Ph dating on alkali-feldspar granite and granite porphyry in the northeast of Jiagedaqi to provide age constraint. The age data shows that the forming age is the Early Cretaceous and provides age basis for the tectonic evolution of the Da Hinggan Mountains.展开更多
Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing dril...Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.展开更多
We report for the first time the geochemistry of rare earth elements(REE) in the weathered crusts of I-type and calc-alkaline to high-K(shoshonitic) granitic rocks at Mamasa and Palu region, Sulawesi Island, Indon...We report for the first time the geochemistry of rare earth elements(REE) in the weathered crusts of I-type and calc-alkaline to high-K(shoshonitic) granitic rocks at Mamasa and Palu region, Sulawesi Island, Indonesia. The weathered crusts can be divided into horizon A(lateritic profile) and B(weathered horizon). Quartz, albite, kaolinite, halloysite and montmorrilonite prevail in the weathered crust. Both weathered profiles show that the total REE increased from the parent rocks to the horizon B but significantly decrease toward the upper part(horizon A). LREE are enriched toward the upper part of the profile as shown by La/YbN value. However, HREE concentrations are high in horizon B1 in Palu profile. The total REE content of the weathered crust are relatively elevated compared to the parent rocks, particularly in the lower part of horizon B in Mamasa profile and in horizon B2 in Palu profile. This suggests that REE-bearing accessory minerals may be resistant against weathering and may remain as residual phase in the weathered crusts. The normalized isocon diagram shows that the mass balance of major and REE components between each horizon in Mamasa and Palu weathering profile are different. The positive Ce anomaly in the horizon A of Mamasa profile indicated that Ce is rapidly precipitated during weathering and retain at the upper soil horizon.展开更多
The Mesozoic high-K granitic intrusions from the eastern Dabie Mountains, Central China, can be divided into three superunits namely the Yaohe, Penghe and Huangbai superunits. The Yaohe superunit is compositionally do...The Mesozoic high-K granitic intrusions from the eastern Dabie Mountains, Central China, can be divided into three superunits namely the Yaohe, Penghe and Huangbai superunits. The Yaohe superunit is compositionally dominated by quartz monzonite extending as a band in NW direction which is differently foliated, contains numerous dioritic enclaves and has been dated as 174 Ma. The Penghe superunit, widely distributed in the field, varies in composition but is dominated by quartz monzonitic and granitic rocks, which is massive in structure, has well developed with dioritic enclaves and is aged in 125-127 Ma. The Huangbai superunit is mainly composed of granitic composition which is massive in structure, rarely contains dioritic enclaves and is aged in 120-111 Ma. These three superunits of granitic intrusions can also be clearly distinguished in geochemistry. They have recorded an orogenic process of the Dabie Mountains from the end of regional metamorphism to the overprinting of the circum-Pacific tectonic regime.展开更多
High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350...High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350 ppm U, 140 ppm Th, and Th/U=0.52; the recommended zircon-melt partition coefficients are 81 for Du and 8.2 for DTh. In zircon from mafic and intermediate rocks, the median values are 270 ppm U, 170 ppm Th, and Th/U=0.81, and the recommended zirconmelt partition coefficients are 169 for Du and 59 for DTh. The U and Th contents and Th/U ratios of magmatic zircon are low when zircon crystallizes in equilibrium with the melt. Increasing magma temperature should promote higher Th contents relative to U contents, resulting in higher Th/U ratios for zircon in mafic to intermediate rocks than in granitic rocks. However, when zircon crystallizes in disequilibrium with the melt, U and Th are more easily able to enter the zircon lattice, and their contents and Th/U ratios depend mainly on the degree of disequilibrium. The behavior of U and Th in magmatic zircon can be used as a geochemical indicator to determine the origins and crystallization environments of magmatic zircon.展开更多
The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite...The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a 206Pb/238U age of 757±7 Ma, representing the approximate age of the high-pressure (HP)- ultrahigh-pressure (UHP) metamorphic event during which the eclogite was formed. The outer peripheral parts of the zircons, which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15 Ma for the approximate age of the emplacement of the granitic rock, and their outer parts, an age of 219±3 Ma for a similar or even the same fluid event. It is thus suggested that the HP-UHP metamorphism of the Bixiling eclogite facies rocks took place during the Neoproterozoic Jinningian, and the Indosinian age values may only represent a late event in the nature of fluid activity.展开更多
In-situ rock failures can result from stress changes due to pure loading and/or unloading. Understanding of the damage evolution behavior in brittle rocks during loading and unloading is imperative for the designs of ...In-situ rock failures can result from stress changes due to pure loading and/or unloading. Understanding of the damage evolution behavior in brittle rocks during loading and unloading is imperative for the designs of rock structures. In this paper, we investigate the damage evolution characteristics of a granitic rock during loading and unloading after a series of triaxial experiments performed at different confining pressures. The axial stress-axial strain variations of the tested specimens revealed that the specimens undergoing unloading fail with a lower axial strain compared to the specimens failed purely by loading. Higher confining pressures were observed to exacerbate the difference. Volumetric strain versus axial strain curves indicated that the curves reverse the trend with the beginning of major damage of specimens. We suggest here a new form of equation to describe the secant modulus variation of brittle rocks against the axial stress for the unloading process. Failure mechanisms of tested specimens showed two distinct patterns, namely, specimens under pure loading failed with a single distinct shear fracture while for the unloading case specimens displayed multiple intersecting fractures. In addition, analysis of the evolution of dissipation and elastic energy during deformation of the specimens under loading and unloading conditions showed differentiable characteristics. Moreover, we evaluated the variations of two damage indices defined based on the energy dissipation and secant modulus evolution during deformation and observed that both of them satisfactorily distinguish key stages of damage evolution.展开更多
Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks ...Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande'ersi molybdenum deposit consist mainly of medium- to fine-grained monzogranite, medium-to fine-grained rich-K granite, with minor fine-grained K- feldspar granite veins and quartz veins. The rocks are characterized by high silica, rich alkali, high potassium, which are favorable factors for molybdenum mineralization. The rocks have the Rittmann index ranging from 1.329 to 1.961, an average Na20+K20 value of 7.41, and AI2Oa/(CaO+Na20+K^O) 〉1, suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite. The typical rock samples are enriched in Rb, Th, K and light rare earth elements, depleted in Sr, Ba, Nb, P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins. The JEu of the rocks falls the zone between the crust granite and crust-mantle granite, and are close to that of the crust granite; (La/LU)N indicates the formation environment of granite is a continental margin setting. The Nb/Ta ratios are close to that of the average crust (10); the Zr/Hf ratios of monzogranite are partly below the mean mantle (34-60), while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust. Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision. During the plate collision and orogeny, the crust and mantle material were mixed physically, remelting into lava and then crystal fractionation, finally gave rise to the formation of the rock body in this area. This has close spatial and temporal relation with the molybdenum mineralization.展开更多
Runnels are characteristic erosional features on karstified soluble rocks and can occasionally develop on less soluble rocks(i.e.sandstones and granites) but are poorly reported in Malaysia.This research summarizes bo...Runnels are characteristic erosional features on karstified soluble rocks and can occasionally develop on less soluble rocks(i.e.sandstones and granites) but are poorly reported in Malaysia.This research summarizes boulder distribution,size,petrology and runnel morphology in a Pleistocene post-glacial mudflow on Mount Kinabalu.The goal is to investigate the runnel formation on granites.Colonization of boulders by cyanobacteria,mosses,lichens and higher plants is observed and related to rock surface meso-scale and micro-scale features.The coarse porphyritic texture of the granite contributes to the fragmentation and mechanical weathering of large K-feldspar crystals in the runnels.The damp runnel micro-environment is preferentially covered with mosses further enhancing weathering and erosion.As runnels deepen,the remnant protruding fins of rock weaken and may break off.The runnels are subaerial pseudokarst features,not the result of dissolution.展开更多
Jordanian granitic rocks (JG) are highly distributed and available in huge quantities in south Jordan, Aqaba area. Granite in south Jordan (JG) is belonging to Aqaba granite complex. This study has been carried out to...Jordanian granitic rocks (JG) are highly distributed and available in huge quantities in south Jordan, Aqaba area. Granite in south Jordan (JG) is belonging to Aqaba granite complex. This study has been carried out to investigate geological and engineering properties of JG from Aqaba vicinity, south Jordan, in addition to identify and classify the different granitic rocks. 27 random samples of JG were collected from different quarries in three locations from the study area to investigate their characterization. Engineering properties of JG were tested and investigated using ultra sonic velocity test, abrasion test, flexural strength, specific gravity test, and compressive strength test. Engineering tests results show that JG has metal disk abrasion less than 21 mm, flexural strength of 16.9 Mpa, average dry specific gravity of 2.69 and very low absorption while the compressive strength results range between 60 to 90 Mpa. The results show that the engineering characterization of JG is complying with local and international specifications and standards used for classifying the decorative and building granite stones.展开更多
The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is ...The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is thought to be an effective method to create fracture networks and open existing fractures in hot dry rocks by injecting chemical agents into the reservoir to dissolve the minerals. Granite is a common type of hot dry rock. In this paper, a series of chemical stimulation experiments were implemented using acid and alkaline agents under high temperature and pressure conditions that mimic the environment of formation. Granite rock samples used in the experiments are collected from the potential EGS reservoir in the Matouying area, Hebei, China. Laboratory experimental results show that the corrosion ratio per unit area of rock is 3.2% in static acid chemical experiments and 0.51% in static alkaline chemical experiments. The permeability of the core is increased by 1.62 times in dynamic acid chemical experiments and 2.45 times in dynamic alkaline chemical experiments. A scanning electron microscope analysis of the core illustrates that secondary minerals, such as chlorite, spherical silica, and montmorillonite, were formed, due to acid-rock interaction with plagioclase being precipitated by alkaline-rock interactions. Masking agents in alkaline chemical agents can slightly reduce the degree of plagioclase formation. A chemical simulation model was built using TOUGHREACT, the mineral dissolution and associated ion concentration variation being reproduced by this reactive transport model.展开更多
The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age ...The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.展开更多
We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite speci...We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite specimens of similar dimensions were tested by a triaxial rock testing machine under uniaxial compression (UC), confined compression (CC) and true-triaxial unloading conditions (RB) under rock burst boundary conditions. The failure processes of these specimens were investigated via examinations of their fracture behavior on a macro-scale by laser profilometers and on a micro-scale by a scanning electron microscopic (SEM) imaging technique. The SEM images, showing the spailing features of RB frag- ments, are compared with the grain dislocations under UC and CC conditions. Based on a variogram method, two fractal parameters, i.e., fractal dimensions (Dr^d) and the scale dependent fractal parameter Kv, were induced to present the surface roughness of scanning profiles in all directions. The fitted ellipses of Dr^d distribution show that RB surface has the smallest eccentricity, followed by the CC surface, while the UC surface had the largest eccentricity. As a result of this assessment, we conclude that rocks are affected by shear traction in an intermediate stress direction, which will cause fractures generated during rock bursts to twist rather than to tilt as shown in the uniaxial compression and the confined compres- sion tests.展开更多
The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton's second law, the rate-equation model of granite rock specim...The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton's second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the me- chanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 ~C to 500 ~C, the internal stress and internal strain are weak; whereas above 500 ~C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.展开更多
The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information i...The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification scheme based on the RMR, the Hierarchical Rock Mass Rating(HRMR) was presented. The main feature of this system was the adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding municipalities which involved considerable challenges due to the high heterogeneity levels of the granite formations and the difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the weathered formations was developed. The results of the validation of these systems are presented and show acceptable performances in identifying the correct class using less information than with the RMR system.展开更多
This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South ...This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South Qinling are characterized by a strong block-effect anddepletion in U-Pb and Th-Pb, showing that these rocks came from the same lead isotopetectono-geochemical province, while those of North Qinling are characterized by higher U-Pband Th-Pb for Late Proterozoic to Early Paleozoic ones and lower U-Pb and Th-Pb forLate-Palaeozoic and younger ones in their feldspar lead isotopic composition. In the NorthQinling block, lead isotopic signatures reflect that the source of granitic magma had changedsince the Late Palaeozoic. Comparison of feldspar lead isotopic composition between SouthQinling and North Qinling shows that there is marked difference in lead isotopic compositionfor pre-Palaeozoic granitoids, indicating that the South Qinling and the North Qinling blocksbelong to different tectonic units, but the similarities in lead isotopic composition are quiteclear, which indicates that the South Qinling block had been welded with the North Qinlingblock and that the magma sources of both blocks were identical. The analysis provides directevidence for underplating of the continental crust of South Qinling beneath the North Qinlingblock in the continent-continent interaction stage of the Eastern Qinling oregenic belt.展开更多
Aswan is famous for Granite rock art reliefs. Seti I granite rock art relief is one of the most important of them. This granite rock art relief suffers from weakness, fragility, fragmentation and peeling because of ma...Aswan is famous for Granite rock art reliefs. Seti I granite rock art relief is one of the most important of them. This granite rock art relief suffers from weakness, fragility, fragmentation and peeling because of many deterioration factors, especially environmental deterioration impacts, such as desert climate with high temperature, residential areas with cafes and shops, and air pollution from exhausts and Kima factory. They can cause chemical weathering. Scientific investigations and analyzes were conducted on this rock art relief such as USB microscope, Polarized (PM) investigation, scanning electron microscope investigation with X-ray energy dispersal unit (EDX) and X-ray diffraction (XRD) analysis to determine the nature and the degree of deterioration, as well as the chemical and mineral composition of the rock and its natural, chemical and mechanical properties. A treatment suggestion to this granite rock art relief has been done.展开更多
基金Supports from the University Transportation Center for Underground Transportation Infrastructure(UTC-UTI)at the Colorado School of Mines for funding this research under Grant No.69A3551747118 from the US Department of Transportation(DOT)the Fundamental Research Funds for the Central Universities under Grant No.A0920502052401-210 are gratefully acknowledged.
文摘From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)(Grant Nos.2019QZKK0703 and 2019QZKK0702)National Science Foundation of China(Grant Nos.91755103 and 41872240)+1 种基金Ministry of Science and Technology of China(Grant No.2016YFC0600304)the Chinese Geological Survey Project(Grant Nos.DD20190060,DD20190370 and DD20190057)。
文摘The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.
基金supported by the National Science Foundation of China(Grant No.41872240 and 91755103)Ministry of Science and Technology of China(Grant No.2016YFC0600304)the Chinese Geological Survey Project(Grant No.DD20190060 and DD20190370)
文摘High-Sr/Y granitic rocks,characterized by intermediate–high SiO2 contents(>56 wt.%),high La/Yb ratios(>20),and low Y(<18 ppm)and Yb(<1.9 ppm)contents,have drawn much attention from geologists in the past decades.They were originally named adakites and defined as granitic magma in convergent plate margins formed by partial melting of subducted young(<25 Ma),hot,and hydrated oceanic slab.Recent studies suggest that these rocks can also be formed in a variety of non-subduction-related tectonic settings through different petrogenetic processes including partial melting of thickened lower continental crust,providing important constraints on crustal growth and evolution throughout the Earth’s history.The Tibetan plateau,generally considered as an archetype of collisional orogen,was formed by the successive accretion of different tectonic terranes to the southern margin of the Eurasia plates since the Early Paleozoic.Geologically,the Tibetan plateau comprises several W–E trending terranes(the Kunlun,North Qiangtang,South Qiangtang,and Lhasa terranes)and northernmost India(the Himalaya region).These terranes have undergone significant crustal thickening during the continental collision events.The crustal thickness of the Tibetan plateau is asymmetric,being thickest under the Lhasa terrane and thinning more gradually towards the north than to the south.From south to north,the crustal thickness increases from^50 km in the Himalaya region,to^70–80 km under the Lhasa terrane,and decreases to^65 km under the North and South Qiangtang terranes and^55 km beneath the Kunlun terrane.The present crustal thickness of the Tibetan plateau has generally been attributed to the Cenozoic collision between the Indian and Eurasian plates and the subsequent intracontinental convergences since^55 Ma.However,doubts were raised about this interpretion in the past few years.For example,recent studies indicated the crust of the Lhasa terrane had been significantly thickened during ca.140–130 Ma in response to the subduction of the Neo-Tethyan Ocean,although the Cretaceous marine strata across the Lhasa terrane demonstrates that it was thin enough to be within the reach of sea level during at least the early Late Cretacous.Whether the South Qiangtang terrane underwent crustal thickening before Cenozoic or not remains an unanswered question.In this study,new zircon U–Pb geochronologic and Hfisotopic,and whole-rock geochemical data of the Late Cretaceous high-Sr/Y granitoids from the eastern South Qiangtang terrane are presented.LA–ICP–MS zircon U–Pb dating produced ages(92.0±1.1 Ma,88.8±0.7 Ma,and 91.5±0.6 Ma)of formation for the Leiwuqi granitoids of the South Qiangtang terrane,Tibetan Plateau,indicating that they were formed during the Late Cretaceous.The granitoids have low A/CNK ratios(0.94–1.06;<1.10)and P2O5 contents(0.02–0.12 wt.%),geochemically similar to I-type granitoids.They are characterized by high Sr(350–938 ppm,most>400 ppm),low Y(5.94–9.67 ppm),with high Sr/Y(36–119,most>40)and(La/Yb)N ratios(67–394).They exhibit negative zirconεHf(t)values(–9.8 to–1.1)and low MgO(0.32–0.69 wt.%),Cr(2.07–12.17 ppm),and Ni(1.10–5.94 ppm)contents.These features suggest that the granitoids probably were derived from partial melting of thickened lower continental crust(>50 km).The crust of the South Qiangtang terrane(at least its eastern part)may have been significantly thickened before the Late Cretaceous.
基金funded by the National Natural Science Foundation of China(grant No.1212011120671)
文摘Objective The research area is located in the north of the Xing'an block and within the Ali River-Zhalantun granite belt in the eastern part of the Xingmeng orogenic belt. The geotectonic setting and geological evolution history of this area are complex with strong magmatic activity and extremely developed granite rocks. Since predecessors have not obtained accurate dating result, there is much controversy over the formation of granitic rocks. Therefore, this work conducted zircon U-Ph dating on alkali-feldspar granite and granite porphyry in the northeast of Jiagedaqi to provide age constraint. The age data shows that the forming age is the Early Cretaceous and provides age basis for the tectonic evolution of the Da Hinggan Mountains.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 7137/03E and R7005/01E)。
文摘Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.
基金Financial support assistance from Global-Centre of Excellent (GCOE) program Kyushu University
文摘We report for the first time the geochemistry of rare earth elements(REE) in the weathered crusts of I-type and calc-alkaline to high-K(shoshonitic) granitic rocks at Mamasa and Palu region, Sulawesi Island, Indonesia. The weathered crusts can be divided into horizon A(lateritic profile) and B(weathered horizon). Quartz, albite, kaolinite, halloysite and montmorrilonite prevail in the weathered crust. Both weathered profiles show that the total REE increased from the parent rocks to the horizon B but significantly decrease toward the upper part(horizon A). LREE are enriched toward the upper part of the profile as shown by La/YbN value. However, HREE concentrations are high in horizon B1 in Palu profile. The total REE content of the weathered crust are relatively elevated compared to the parent rocks, particularly in the lower part of horizon B in Mamasa profile and in horizon B2 in Palu profile. This suggests that REE-bearing accessory minerals may be resistant against weathering and may remain as residual phase in the weathered crusts. The normalized isocon diagram shows that the mass balance of major and REE components between each horizon in Mamasa and Palu weathering profile are different. The positive Ce anomaly in the horizon A of Mamasa profile indicated that Ce is rapidly precipitated during weathering and retain at the upper soil horizon.
基金the National Natural Science Foundation of China (Grant No. 49772104) and the Mapping Projects Scaled on 1/50000 from the Ministry of Geology and Mineral Resources of China.
文摘The Mesozoic high-K granitic intrusions from the eastern Dabie Mountains, Central China, can be divided into three superunits namely the Yaohe, Penghe and Huangbai superunits. The Yaohe superunit is compositionally dominated by quartz monzonite extending as a band in NW direction which is differently foliated, contains numerous dioritic enclaves and has been dated as 174 Ma. The Penghe superunit, widely distributed in the field, varies in composition but is dominated by quartz monzonitic and granitic rocks, which is massive in structure, has well developed with dioritic enclaves and is aged in 125-127 Ma. The Huangbai superunit is mainly composed of granitic composition which is massive in structure, rarely contains dioritic enclaves and is aged in 120-111 Ma. These three superunits of granitic intrusions can also be clearly distinguished in geochemistry. They have recorded an orogenic process of the Dabie Mountains from the end of regional metamorphism to the overprinting of the circum-Pacific tectonic regime.
基金supported by the National Natural Science Foundation of China(Grant No. 40972058)the research grants(2008-Ⅰ-02 and 2008-Ⅱ-08)from the State Key Laboratory for Mineral Deposit Research,Nanjing University
文摘High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350 ppm U, 140 ppm Th, and Th/U=0.52; the recommended zircon-melt partition coefficients are 81 for Du and 8.2 for DTh. In zircon from mafic and intermediate rocks, the median values are 270 ppm U, 170 ppm Th, and Th/U=0.81, and the recommended zirconmelt partition coefficients are 169 for Du and 59 for DTh. The U and Th contents and Th/U ratios of magmatic zircon are low when zircon crystallizes in equilibrium with the melt. Increasing magma temperature should promote higher Th contents relative to U contents, resulting in higher Th/U ratios for zircon in mafic to intermediate rocks than in granitic rocks. However, when zircon crystallizes in disequilibrium with the melt, U and Th are more easily able to enter the zircon lattice, and their contents and Th/U ratios depend mainly on the degree of disequilibrium. The behavior of U and Th in magmatic zircon can be used as a geochemical indicator to determine the origins and crystallization environments of magmatic zircon.
文摘The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a 206Pb/238U age of 757±7 Ma, representing the approximate age of the high-pressure (HP)- ultrahigh-pressure (UHP) metamorphic event during which the eclogite was formed. The outer peripheral parts of the zircons, which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15 Ma for the approximate age of the emplacement of the granitic rock, and their outer parts, an age of 219±3 Ma for a similar or even the same fluid event. It is thus suggested that the HP-UHP metamorphism of the Bixiling eclogite facies rocks took place during the Neoproterozoic Jinningian, and the Indosinian age values may only represent a late event in the nature of fluid activity.
基金Projects(51774187,51324744,51374129)supported by the National Natural Science Foundation of ChinaProject(71380100006)supported by the Innovation Foundation of Doctoral Student in Hunan Province,China+1 种基金Project(2017SK2280)supported by the Key Research and Development Program of Hunan Provincial Science and Technology Department,ChinaProject(17A184)supported by the Key Research Foundation of Education Bureau of Hunan Province,China
文摘In-situ rock failures can result from stress changes due to pure loading and/or unloading. Understanding of the damage evolution behavior in brittle rocks during loading and unloading is imperative for the designs of rock structures. In this paper, we investigate the damage evolution characteristics of a granitic rock during loading and unloading after a series of triaxial experiments performed at different confining pressures. The axial stress-axial strain variations of the tested specimens revealed that the specimens undergoing unloading fail with a lower axial strain compared to the specimens failed purely by loading. Higher confining pressures were observed to exacerbate the difference. Volumetric strain versus axial strain curves indicated that the curves reverse the trend with the beginning of major damage of specimens. We suggest here a new form of equation to describe the secant modulus variation of brittle rocks against the axial stress for the unloading process. Failure mechanisms of tested specimens showed two distinct patterns, namely, specimens under pure loading failed with a single distinct shear fracture while for the unloading case specimens displayed multiple intersecting fractures. In addition, analysis of the evolution of dissipation and elastic energy during deformation of the specimens under loading and unloading conditions showed differentiable characteristics. Moreover, we evaluated the variations of two damage indices defined based on the energy dissipation and secant modulus evolution during deformation and observed that both of them satisfactorily distinguish key stages of damage evolution.
基金supported by the National Natural Science Foundation,40073013
文摘Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande'ersi molybdenum deposit consist mainly of medium- to fine-grained monzogranite, medium-to fine-grained rich-K granite, with minor fine-grained K- feldspar granite veins and quartz veins. The rocks are characterized by high silica, rich alkali, high potassium, which are favorable factors for molybdenum mineralization. The rocks have the Rittmann index ranging from 1.329 to 1.961, an average Na20+K20 value of 7.41, and AI2Oa/(CaO+Na20+K^O) 〉1, suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite. The typical rock samples are enriched in Rb, Th, K and light rare earth elements, depleted in Sr, Ba, Nb, P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins. The JEu of the rocks falls the zone between the crust granite and crust-mantle granite, and are close to that of the crust granite; (La/LU)N indicates the formation environment of granite is a continental margin setting. The Nb/Ta ratios are close to that of the average crust (10); the Zr/Hf ratios of monzogranite are partly below the mean mantle (34-60), while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust. Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision. During the plate collision and orogeny, the crust and mantle material were mixed physically, remelting into lava and then crystal fractionation, finally gave rise to the formation of the rock body in this area. This has close spatial and temporal relation with the molybdenum mineralization.
文摘Runnels are characteristic erosional features on karstified soluble rocks and can occasionally develop on less soluble rocks(i.e.sandstones and granites) but are poorly reported in Malaysia.This research summarizes boulder distribution,size,petrology and runnel morphology in a Pleistocene post-glacial mudflow on Mount Kinabalu.The goal is to investigate the runnel formation on granites.Colonization of boulders by cyanobacteria,mosses,lichens and higher plants is observed and related to rock surface meso-scale and micro-scale features.The coarse porphyritic texture of the granite contributes to the fragmentation and mechanical weathering of large K-feldspar crystals in the runnels.The damp runnel micro-environment is preferentially covered with mosses further enhancing weathering and erosion.As runnels deepen,the remnant protruding fins of rock weaken and may break off.The runnels are subaerial pseudokarst features,not the result of dissolution.
文摘Jordanian granitic rocks (JG) are highly distributed and available in huge quantities in south Jordan, Aqaba area. Granite in south Jordan (JG) is belonging to Aqaba granite complex. This study has been carried out to investigate geological and engineering properties of JG from Aqaba vicinity, south Jordan, in addition to identify and classify the different granitic rocks. 27 random samples of JG were collected from different quarries in three locations from the study area to investigate their characterization. Engineering properties of JG were tested and investigated using ultra sonic velocity test, abrasion test, flexural strength, specific gravity test, and compressive strength test. Engineering tests results show that JG has metal disk abrasion less than 21 mm, flexural strength of 16.9 Mpa, average dry specific gravity of 2.69 and very low absorption while the compressive strength results range between 60 to 90 Mpa. The results show that the engineering characterization of JG is complying with local and international specifications and standards used for classifying the decorative and building granite stones.
基金jointly supported by the National Key R&D Program of China(No.2018YFB1501802)the National Natural Science Foundation of China(No.41902309)funded by the Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education,Jilin University。
文摘The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is thought to be an effective method to create fracture networks and open existing fractures in hot dry rocks by injecting chemical agents into the reservoir to dissolve the minerals. Granite is a common type of hot dry rock. In this paper, a series of chemical stimulation experiments were implemented using acid and alkaline agents under high temperature and pressure conditions that mimic the environment of formation. Granite rock samples used in the experiments are collected from the potential EGS reservoir in the Matouying area, Hebei, China. Laboratory experimental results show that the corrosion ratio per unit area of rock is 3.2% in static acid chemical experiments and 0.51% in static alkaline chemical experiments. The permeability of the core is increased by 1.62 times in dynamic acid chemical experiments and 2.45 times in dynamic alkaline chemical experiments. A scanning electron microscope analysis of the core illustrates that secondary minerals, such as chlorite, spherical silica, and montmorillonite, were formed, due to acid-rock interaction with plagioclase being precipitated by alkaline-rock interactions. Masking agents in alkaline chemical agents can slightly reduce the degree of plagioclase formation. A chemical simulation model was built using TOUGHREACT, the mineral dissolution and associated ion concentration variation being reproduced by this reactive transport model.
基金the context of the international DECOVALEX Project (DEmonstration of COupled models and their VALidation against EXperiments)financed by Radioactive Waste Repository Authority (RAWRA),through Technical University of Liberec (TUL), Czech RepublicSKB through its sp Pillar Stability Experiment project
文摘The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.
基金the Major State Basic Research and Development Program of China (No.2006CB202200)the GDUE Open Funding (No.SKLGDUEK0914)the Creative Team Development Project of the Ministry of Education of China (No.IRT0656)
文摘We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite specimens of similar dimensions were tested by a triaxial rock testing machine under uniaxial compression (UC), confined compression (CC) and true-triaxial unloading conditions (RB) under rock burst boundary conditions. The failure processes of these specimens were investigated via examinations of their fracture behavior on a macro-scale by laser profilometers and on a micro-scale by a scanning electron microscopic (SEM) imaging technique. The SEM images, showing the spailing features of RB frag- ments, are compared with the grain dislocations under UC and CC conditions. Based on a variogram method, two fractal parameters, i.e., fractal dimensions (Dr^d) and the scale dependent fractal parameter Kv, were induced to present the surface roughness of scanning profiles in all directions. The fitted ellipses of Dr^d distribution show that RB surface has the smallest eccentricity, followed by the CC surface, while the UC surface had the largest eccentricity. As a result of this assessment, we conclude that rocks are affected by shear traction in an intermediate stress direction, which will cause fractures generated during rock bursts to twist rather than to tilt as shown in the uniaxial compression and the confined compres- sion tests.
文摘The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton's second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the me- chanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 ~C to 500 ~C, the internal stress and internal strain are weak; whereas above 500 ~C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.
文摘The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification scheme based on the RMR, the Hierarchical Rock Mass Rating(HRMR) was presented. The main feature of this system was the adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding municipalities which involved considerable challenges due to the high heterogeneity levels of the granite formations and the difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the weathered formations was developed. The results of the validation of these systems are presented and show acceptable performances in identifying the correct class using less information than with the RMR system.
基金This study was supported by the National Natural Science Foundation of China Grant No.49290102.
文摘This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South Qinling are characterized by a strong block-effect anddepletion in U-Pb and Th-Pb, showing that these rocks came from the same lead isotopetectono-geochemical province, while those of North Qinling are characterized by higher U-Pband Th-Pb for Late Proterozoic to Early Paleozoic ones and lower U-Pb and Th-Pb forLate-Palaeozoic and younger ones in their feldspar lead isotopic composition. In the NorthQinling block, lead isotopic signatures reflect that the source of granitic magma had changedsince the Late Palaeozoic. Comparison of feldspar lead isotopic composition between SouthQinling and North Qinling shows that there is marked difference in lead isotopic compositionfor pre-Palaeozoic granitoids, indicating that the South Qinling and the North Qinling blocksbelong to different tectonic units, but the similarities in lead isotopic composition are quiteclear, which indicates that the South Qinling block had been welded with the North Qinlingblock and that the magma sources of both blocks were identical. The analysis provides directevidence for underplating of the continental crust of South Qinling beneath the North Qinlingblock in the continent-continent interaction stage of the Eastern Qinling oregenic belt.
文摘Aswan is famous for Granite rock art reliefs. Seti I granite rock art relief is one of the most important of them. This granite rock art relief suffers from weakness, fragility, fragmentation and peeling because of many deterioration factors, especially environmental deterioration impacts, such as desert climate with high temperature, residential areas with cafes and shops, and air pollution from exhausts and Kima factory. They can cause chemical weathering. Scientific investigations and analyzes were conducted on this rock art relief such as USB microscope, Polarized (PM) investigation, scanning electron microscope investigation with X-ray energy dispersal unit (EDX) and X-ray diffraction (XRD) analysis to determine the nature and the degree of deterioration, as well as the chemical and mineral composition of the rock and its natural, chemical and mechanical properties. A treatment suggestion to this granite rock art relief has been done.