A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation a...A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation at 35℃, an initial biomass of 17.74 g·L^-1 and hydraulic retention time (HRT) of 6 h, the CSTR reactor presented a continuous hydrogen production ability of 5.9 L·d^-1 and the biogas was free of methane throughout the experiment. Dissolved fermehtation products were predominated by ethanol and acetate acid, with smaller quantities of propionic acid, butyric acid and valeric acid. It was found that GAC could make the immobilized system durable and stable in response to organic load impacting and low pH value. When the organic loading rate (OLR) ranged from 8 kgCOD/(m^3d) to 4 kgCOD/(m^3d), stable ethanol-type fermentation was formed, and the ethanol and acetate concentrations account for 89% of the total liquid products.展开更多
Granular activated carbon (GAC) anaerobic fluidized bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and COD Cr were 0 39 kg/(m...Granular activated carbon (GAC) anaerobic fluidized bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and COD Cr were 0 39 kg/(m 3·d) and 0 98 kg/(m 3·d), their removal rates were 99 9% and 96 4% respectively. From analyzing above results, the main mechanisms of the process are that through fluidizing GAC, its adsorption is combined with biodegradation, both activities are brought into full play, and phenol in wastewater is effectively decomposed. Meanwhile problems concerning gas liquid separation and medium plugging are well solved.展开更多
The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid ...The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid Orange 7-degrading microbial from anaerobic sequencing batch reactor which treating the azo dye-containing wastewater for more than 200 d was immobilized on spent granular activated carbon(GAC)through attachment.The GAC-biofilm configured packed column system showed the ability to decolorize 10...展开更多
Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capaci...Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capacity of oxidized granular activated carbon enlarged with an increase in pH, and reduced with an increase in ionic strength. Experimental data were evaluated to find out kinetic characteristics. Adsorption processes were found to follow pseudo-second order rate equation. Adsorption isotherms correlate well with the Langmuir isotherm model and the maximum sorption capacity of cadmium evaluated is 51.02 μmol/g. Thermodynamic parameters were calculated based on Van't Hoff equation. Equilibrium constant Kd was evaluated from Freundlich isotherm model constants, Langmuir isotherm model constants, and isotherms, respectively. The average change of standard adsorption heat ΔH^0 was -25.29 kJ/mol. Negative ΔH^0 and ΔG^0 values indicate the adsorption process for cadmium onto the studied activated carbon is exothermic and spontaneous. The standard entropy ΔS^0 was also negative, which suggests a decrease in the freedom of the system.展开更多
Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular ...Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.展开更多
A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon(Fe-Mn GAC) under a dielectric barrier discharge(DBD) plasma was investigated to enhance the degradation of oxytetra...A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon(Fe-Mn GAC) under a dielectric barrier discharge(DBD) plasma was investigated to enhance the degradation of oxytetracycline(OTC) in water. The prepared Fe-Mn GAC was characterized by x-ray diffraction and scanning electron microscopy, and the results showed that the bimetallic oxides had been successfully spread on the GAC surface. The experimental results showed that the DBD?+?Fe-Mn GAC exhibited better OTC removal efficiency than the sole DBD and DBD?+?virgin GAC systems. Increasing the fabricated catalyst and discharge voltage was favorable to the antibiotic elimination and energy yield in the hybrid process. The coupling process could be elucidated by the ozone decomposition after Fe-Mn GAC addition, and highly hydroxyl and superoxide radicals both play significant roles in the decontamination. The main intermediate products were identified by HPLC-MS to study the mechanism in the collaborative system.展开更多
The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyze...The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N2 adsorption, thermogravimetric, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and gas chromatographymass spectrometry (GC-MS). The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models, respectively. The results indicate that the types of N2 adsorption isotherm of GAC are not changed by DBD plasma, while the specific surface area and pore volume increase after DBD plasma treatment. It is found that the weight loss of the saturated GAC is the highest, on the contrary, the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC. The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma, and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology. The GC-MS identification of by-products shows that two main dechlorination intermediate products, tetrachlorophenol and trichlorophenol, are distinguished. The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption, and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC.展开更多
In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC)....In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment.展开更多
A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET speci...A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET specific surface area (SBEr), total pore volume (Vr) and average pore diameter (da) were measured and cal- culated as well as process parameters such as yield of char (CY) and burn-off (B). The relationship between the pore structural parameters of the GAC from coal blend (BC-GAC) and the ones of the GACs from corresponding single coals (SC-GACs) was analyzed, in which an index, the relative error (δ), was presented to define the bias between fitted values and experimental values of these parameters of the BC-GACs. The results show that the BC-GAC keeps qualitatively the pore structural features of the SC-GACs; as concerned as the quantitative relationship, the pore structural parameters of the BC-GAC from coal blend consisting of non-caking coals can be obtained by adding proportionally the pore structural parameters of the SC-GACs with a less than 10%. Meanwhile, for the BC-GAC from coal blend containing weak caking bituminous coal, the δ increases up to 25% and the experimental pore size distribution differs greatly from the fitted one.展开更多
[Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare lo...[Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare low-valued products.The high-valued utilization of China fir sawdust extracted essential oil(CFSEEO),namely as a precursor to prepare granular activated carbons(GACs),was attempted.The materials were characterized by ultimate analysis,SEM and XRD.[Rusult] A butane working capacity(BWC)of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml.It was available to introduce the technology of extracting essential oil from the China fir sawdust(CFS)in the industrial production process of activated carbons with high BWC(12.0-16.5 g/100 ml)and high surface area(2 000-2 630 m2/g)using phosphoric acid based on previous studies of the authors.[Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.展开更多
The use of powdered activated carbon for fouling control in the membrane processes is limited by some secondary problems associated with its use, like cake formation, long backwash times and blackening of pipes. Granu...The use of powdered activated carbon for fouling control in the membrane processes is limited by some secondary problems associated with its use, like cake formation, long backwash times and blackening of pipes. Granular activated carbon (GAC) was used as an alternative of powdered activated carbon due to its large particle size which was kept from being entering into the membrane system. The secondary problems associated with the use of powdered activated carbon as foul control were not observed for granular activated carbon. Langmuir and Freundlich adsorption were used to describe the adsorption of 2,4-D and paraquat on GAC. Adsorption capacity of adsorbent was high for 2,4-D as compared to paraquat. Also, the R2 value was high for Langmuir model as compared to Freundlich model. Retention percentage of 2,4-D by membrane was high and thus the decline in permeate flux was high as compared to paraquat in ultrafiltration (UF) membrane process. 100% retention of 2,4-D was achieved in GAC/UF hybrid system. Improved permeate fluxes were observed for both contaminants in the hybrid system.展开更多
A combined method of granular activated carbon(GAC) adsorption and bipolar pulse dielectric barrier discharge(DBD) plasma regeneration was employed to degrade phenol in water.After being saturated with phenol,the ...A combined method of granular activated carbon(GAC) adsorption and bipolar pulse dielectric barrier discharge(DBD) plasma regeneration was employed to degrade phenol in water.After being saturated with phenol,the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters.The results showed that different peak voltages,air flow rates,and GAC content can affect phenol decomposition and its major degradation intermediates,such as catechol,hydroquinone,and benzoquinone.The higher voltage and air support were conducive to the removal of phenol,and the proper water moisture of the GAC was 20%.The amount of H2 O2 on the GAC was quantitatively determined,and its laws of production were similar to phenol elimination.Under the optimized conditions,the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%.Also,a possible degradation mechanism was proposed based on the HPLC analysis.Meanwhile,the regeneration efficiency of the GAC was improved with the discharge treatment time,which attained 88.5% after 100 min of DBD processing.展开更多
Comparative experiments on the inactivation of Copepod were investigated in southern China. The 100% of inactivation effect may be attained by 3.0 mg/L of ozone for contacting time of 25 min, whereas 0.5 mg/L of dosag...Comparative experiments on the inactivation of Copepod were investigated in southern China. The 100% of inactivation effect may be attained by 3.0 mg/L of ozone for contacting time of 25 min, whereas 0.5 mg/L of dosage resulted in only 30% of inactivation rate. Copepod may not be completely inactivated by ozone oxidation for feasible dosage limited by higher bromide in raw water. The favorable environment of granular activated carbon (GAC) filter provided Copepod with conditions for excess propagation, The disinfection experimental results show that the inactivation rate is 90% by 2.0 mg/L of chloramines for contacting time of 30 min, whereas only 70% is attained with chlorine. The GC-MS examination indicates that the total organic substance is increased to 92 specie: inciuding 13 sorts of halogenated hydrocarbon by chlorine disnfection, which is more than that of chloramines. More products of bromiinated trihalomethanes occur in treated water by chlorine, disinfection and total amount of THMs is 3 times as high as that of chloramines.展开更多
In order to improve adsorption capacity of granular activated carbon (GAC), potassium permanganate was used to react with GAC to change the surface properties and improve the adsorption capacity of GAC. By batch exper...In order to improve adsorption capacity of granular activated carbon (GAC), potassium permanganate was used to react with GAC to change the surface properties and improve the adsorption capacity of GAC. By batch experiments, improvement of adsorption capacity of potassium permanganate modified GAC (GACM) was studied. The influence of adsorption time, temperature, ratio of phenol with GAC/GACM, initial concentration of phenol and pH on adsorption efficiency of GACM was studied. The results showed that modified by potassium permanganate, the adsorption capacity of GAC improved to a higher level. The removal efficiency of phenol increased to about 20%.展开更多
The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorpti...The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.展开更多
基金supported by the National Hi-Tech R&D Program (863 Program)Ministry of Science&Technology, China (Grant No. 2006AA05Z109)+1 种基金Shanghai Science and Technology Bureau (Grant No.071605122)Educated programme of excellent doctor of Southeast Forestry University (GRAP09)
文摘A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation at 35℃, an initial biomass of 17.74 g·L^-1 and hydraulic retention time (HRT) of 6 h, the CSTR reactor presented a continuous hydrogen production ability of 5.9 L·d^-1 and the biogas was free of methane throughout the experiment. Dissolved fermehtation products were predominated by ethanol and acetate acid, with smaller quantities of propionic acid, butyric acid and valeric acid. It was found that GAC could make the immobilized system durable and stable in response to organic load impacting and low pH value. When the organic loading rate (OLR) ranged from 8 kgCOD/(m^3d) to 4 kgCOD/(m^3d), stable ethanol-type fermentation was formed, and the ethanol and acetate concentrations account for 89% of the total liquid products.
文摘Granular activated carbon (GAC) anaerobic fluidized bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and COD Cr were 0 39 kg/(m 3·d) and 0 98 kg/(m 3·d), their removal rates were 99 9% and 96 4% respectively. From analyzing above results, the main mechanisms of the process are that through fluidizing GAC, its adsorption is combined with biodegradation, both activities are brought into full play, and phenol in wastewater is effectively decomposed. Meanwhile problems concerning gas liquid separation and medium plugging are well solved.
文摘The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid Orange 7-degrading microbial from anaerobic sequencing batch reactor which treating the azo dye-containing wastewater for more than 200 d was immobilized on spent granular activated carbon(GAC)through attachment.The GAC-biofilm configured packed column system showed the ability to decolorize 10...
基金Project supported by the Hi-Tech Research and Development Program(863)of China(No.2002AA601130)the Basic Science Research Program of Shanghai(No.05JC 14059).
文摘Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capacity of oxidized granular activated carbon enlarged with an increase in pH, and reduced with an increase in ionic strength. Experimental data were evaluated to find out kinetic characteristics. Adsorption processes were found to follow pseudo-second order rate equation. Adsorption isotherms correlate well with the Langmuir isotherm model and the maximum sorption capacity of cadmium evaluated is 51.02 μmol/g. Thermodynamic parameters were calculated based on Van't Hoff equation. Equilibrium constant Kd was evaluated from Freundlich isotherm model constants, Langmuir isotherm model constants, and isotherms, respectively. The average change of standard adsorption heat ΔH^0 was -25.29 kJ/mol. Negative ΔH^0 and ΔG^0 values indicate the adsorption process for cadmium onto the studied activated carbon is exothermic and spontaneous. The standard entropy ΔS^0 was also negative, which suggests a decrease in the freedom of the system.
基金support from the National Hi-Tech R&D Program(863 Program)Ministry of Science & Technology,China(2006AA05Z109)+2 种基金Shanghai Science and Technology Bureau(071605122)Shanghai Education Committee(07ZZ156)GRAP09,Northeast Forestry University are gratefully acknowledged
文摘Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.
基金supported by National Natural Science Foundation of China (No. 51608468)High School Science and Technology Research Project of Hebei Province (No. QN2018258)+1 种基金China Postdoctoral Science Foundation (Nos. 2015M580216 and 2016M601285)Hebei Province Preferred Postdoctoral Science Foundation (No. B2016003019)
文摘A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon(Fe-Mn GAC) under a dielectric barrier discharge(DBD) plasma was investigated to enhance the degradation of oxytetracycline(OTC) in water. The prepared Fe-Mn GAC was characterized by x-ray diffraction and scanning electron microscopy, and the results showed that the bimetallic oxides had been successfully spread on the GAC surface. The experimental results showed that the DBD?+?Fe-Mn GAC exhibited better OTC removal efficiency than the sole DBD and DBD?+?virgin GAC systems. Increasing the fabricated catalyst and discharge voltage was favorable to the antibiotic elimination and energy yield in the hybrid process. The coupling process could be elucidated by the ozone decomposition after Fe-Mn GAC addition, and highly hydroxyl and superoxide radicals both play significant roles in the decontamination. The main intermediate products were identified by HPLC-MS to study the mechanism in the collaborative system.
基金supported by National Natural Science Foundation of China (No. 21107085) and National High Technology Research and Development Program of China (No. 2008AA06Z308)
文摘The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N2 adsorption, thermogravimetric, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and gas chromatographymass spectrometry (GC-MS). The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models, respectively. The results indicate that the types of N2 adsorption isotherm of GAC are not changed by DBD plasma, while the specific surface area and pore volume increase after DBD plasma treatment. It is found that the weight loss of the saturated GAC is the highest, on the contrary, the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC. The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma, and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology. The GC-MS identification of by-products shows that two main dechlorination intermediate products, tetrachlorophenol and trichlorophenol, are distinguished. The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption, and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC.
基金supported by National Natural Science Foundation of China(No.21207052)China Postdoctoral Science Foundation(No.20110491353)Jiangsu Planned Projects for Postdoctoral Research Funds,China(No.1102116C)
文摘In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment.
基金financially supported by the National High-Tech Research and Development Program of China (No.2008AA05Z308)the National Natural Science Foundation of China (No.20776150)
文摘A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET specific surface area (SBEr), total pore volume (Vr) and average pore diameter (da) were measured and cal- culated as well as process parameters such as yield of char (CY) and burn-off (B). The relationship between the pore structural parameters of the GAC from coal blend (BC-GAC) and the ones of the GACs from corresponding single coals (SC-GACs) was analyzed, in which an index, the relative error (δ), was presented to define the bias between fitted values and experimental values of these parameters of the BC-GACs. The results show that the BC-GAC keeps qualitatively the pore structural features of the SC-GACs; as concerned as the quantitative relationship, the pore structural parameters of the BC-GAC from coal blend consisting of non-caking coals can be obtained by adding proportionally the pore structural parameters of the SC-GACs with a less than 10%. Meanwhile, for the BC-GAC from coal blend containing weak caking bituminous coal, the δ increases up to 25% and the experimental pore size distribution differs greatly from the fitted one.
基金Supported by "11th five year" National Science and Technology Support Project Grants(2009BADB1B03)Forestry Public Welfare Industry Special(201004051)
文摘[Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare low-valued products.The high-valued utilization of China fir sawdust extracted essential oil(CFSEEO),namely as a precursor to prepare granular activated carbons(GACs),was attempted.The materials were characterized by ultimate analysis,SEM and XRD.[Rusult] A butane working capacity(BWC)of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml.It was available to introduce the technology of extracting essential oil from the China fir sawdust(CFS)in the industrial production process of activated carbons with high BWC(12.0-16.5 g/100 ml)and high surface area(2 000-2 630 m2/g)using phosphoric acid based on previous studies of the authors.[Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.
文摘The use of powdered activated carbon for fouling control in the membrane processes is limited by some secondary problems associated with its use, like cake formation, long backwash times and blackening of pipes. Granular activated carbon (GAC) was used as an alternative of powdered activated carbon due to its large particle size which was kept from being entering into the membrane system. The secondary problems associated with the use of powdered activated carbon as foul control were not observed for granular activated carbon. Langmuir and Freundlich adsorption were used to describe the adsorption of 2,4-D and paraquat on GAC. Adsorption capacity of adsorbent was high for 2,4-D as compared to paraquat. Also, the R2 value was high for Langmuir model as compared to Freundlich model. Retention percentage of 2,4-D by membrane was high and thus the decline in permeate flux was high as compared to paraquat in ultrafiltration (UF) membrane process. 100% retention of 2,4-D was achieved in GAC/UF hybrid system. Improved permeate fluxes were observed for both contaminants in the hybrid system.
基金financially supported by National Natural Science Foundation of China(Project No.51608468)the Natural Science Foundation of Hebei Province(Project Nos.B2015203303 and B2015203300)+3 种基金the China Postdoctoral Science Foundation(Project Nos.2015M580216 and 2016M601285)the Youth Teacher Independent Research Program of Yanshan University(Project No.15LGA013)the Hebei Province Preferred Postdoctoral Science Foundation(B2016003019)the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering(MOE)
文摘A combined method of granular activated carbon(GAC) adsorption and bipolar pulse dielectric barrier discharge(DBD) plasma regeneration was employed to degrade phenol in water.After being saturated with phenol,the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters.The results showed that different peak voltages,air flow rates,and GAC content can affect phenol decomposition and its major degradation intermediates,such as catechol,hydroquinone,and benzoquinone.The higher voltage and air support were conducive to the removal of phenol,and the proper water moisture of the GAC was 20%.The amount of H2 O2 on the GAC was quantitatively determined,and its laws of production were similar to phenol elimination.Under the optimized conditions,the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%.Also,a possible degradation mechanism was proposed based on the HPLC analysis.Meanwhile,the regeneration efficiency of the GAC was improved with the discharge treatment time,which attained 88.5% after 100 min of DBD processing.
基金National Natural Science Foundation of China(No.50808065)National Key High-Tech Program(863) of China(No.2006AA06Z311)Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes Open Project,China(No.2006KJ006)
文摘Comparative experiments on the inactivation of Copepod were investigated in southern China. The 100% of inactivation effect may be attained by 3.0 mg/L of ozone for contacting time of 25 min, whereas 0.5 mg/L of dosage resulted in only 30% of inactivation rate. Copepod may not be completely inactivated by ozone oxidation for feasible dosage limited by higher bromide in raw water. The favorable environment of granular activated carbon (GAC) filter provided Copepod with conditions for excess propagation, The disinfection experimental results show that the inactivation rate is 90% by 2.0 mg/L of chloramines for contacting time of 30 min, whereas only 70% is attained with chlorine. The GC-MS examination indicates that the total organic substance is increased to 92 specie: inciuding 13 sorts of halogenated hydrocarbon by chlorine disnfection, which is more than that of chloramines. More products of bromiinated trihalomethanes occur in treated water by chlorine, disinfection and total amount of THMs is 3 times as high as that of chloramines.
文摘In order to improve adsorption capacity of granular activated carbon (GAC), potassium permanganate was used to react with GAC to change the surface properties and improve the adsorption capacity of GAC. By batch experiments, improvement of adsorption capacity of potassium permanganate modified GAC (GACM) was studied. The influence of adsorption time, temperature, ratio of phenol with GAC/GACM, initial concentration of phenol and pH on adsorption efficiency of GACM was studied. The results showed that modified by potassium permanganate, the adsorption capacity of GAC improved to a higher level. The removal efficiency of phenol increased to about 20%.
文摘The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.