A novel amphoteric granular lignin adsorbent(AGLA) was prepared using magnesium lignosulfonate as a raw material which was provided by a straw sulfite pulp mill in Guangdong Province, China. A reactive dye(red K-3B) w...A novel amphoteric granular lignin adsorbent(AGLA) was prepared using magnesium lignosulfonate as a raw material which was provided by a straw sulfite pulp mill in Guangdong Province, China. A reactive dye(red K-3B) was used as an adsorbate to investigate the adsorption behavior by static and mobile ways. The removal of reactive red K-3B was found to be initially pH and concentration dependent. Moreover, an increase of solution temperature ranging from 5℃ to 60℃ helped to enhance the rate of intraparticle diffusion of adsorbate and changes in the size of the pores of the adsorbent and thus to reduce the adsorption time. The total breakthrough adsorption capacity was 531 mg/g, and the saturated adsorption capacity was 560 mg/g, which prevailed over the activated carbons evidently. The reactive red K-3B adsorbed on AGLA could be recovered with a mixture of alcohol, NaCl and HCl aqueous solutions. The recovery percentage could reach 92.4%.展开更多
文摘A novel amphoteric granular lignin adsorbent(AGLA) was prepared using magnesium lignosulfonate as a raw material which was provided by a straw sulfite pulp mill in Guangdong Province, China. A reactive dye(red K-3B) was used as an adsorbate to investigate the adsorption behavior by static and mobile ways. The removal of reactive red K-3B was found to be initially pH and concentration dependent. Moreover, an increase of solution temperature ranging from 5℃ to 60℃ helped to enhance the rate of intraparticle diffusion of adsorbate and changes in the size of the pores of the adsorbent and thus to reduce the adsorption time. The total breakthrough adsorption capacity was 531 mg/g, and the saturated adsorption capacity was 560 mg/g, which prevailed over the activated carbons evidently. The reactive red K-3B adsorbed on AGLA could be recovered with a mixture of alcohol, NaCl and HCl aqueous solutions. The recovery percentage could reach 92.4%.