Declarative Programming Languages (DPLs) apply a process model of Horn claun es such as PARLOG[8] or a reduction model of A-calculus such as SML[7] and are) in principle, well suited to multiprocessor implemelltation....Declarative Programming Languages (DPLs) apply a process model of Horn claun es such as PARLOG[8] or a reduction model of A-calculus such as SML[7] and are) in principle, well suited to multiprocessor implemelltation. However, the performance of a parallel declarative program can be impaired by a mismatch between the parallelism available in an application and the parallelism available in the architecture. A particularly attractive solution is to automatically match the parallelism of the program to the parallelism of the target hardware as a compilation step. In this paper) we present an optimizillg compilation technique called granularity analysis which identi fies and removes excess parallelism that would degrade performance. The main steps are: an analysis of the flow of data to form an attributed call graph between function (or predicate) arguments; and an asymptotic estimation of granularity of a function (or predicate) to generate approximate grain size. Compiled procedure calls can be annotated with grain size and a task scheduler can make scheduling decisions with the classilication scheme of grains to control parallelism at runtime. The resulting granularity analysis scheme is suitable for exploiting adaptive parallelism of declarative programming languages on multiprocessors.展开更多
The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. Th...The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.展开更多
文摘Declarative Programming Languages (DPLs) apply a process model of Horn claun es such as PARLOG[8] or a reduction model of A-calculus such as SML[7] and are) in principle, well suited to multiprocessor implemelltation. However, the performance of a parallel declarative program can be impaired by a mismatch between the parallelism available in an application and the parallelism available in the architecture. A particularly attractive solution is to automatically match the parallelism of the program to the parallelism of the target hardware as a compilation step. In this paper) we present an optimizillg compilation technique called granularity analysis which identi fies and removes excess parallelism that would degrade performance. The main steps are: an analysis of the flow of data to form an attributed call graph between function (or predicate) arguments; and an asymptotic estimation of granularity of a function (or predicate) to generate approximate grain size. Compiled procedure calls can be annotated with grain size and a task scheduler can make scheduling decisions with the classilication scheme of grains to control parallelism at runtime. The resulting granularity analysis scheme is suitable for exploiting adaptive parallelism of declarative programming languages on multiprocessors.
文摘The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.