期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model
1
作者 Chenxi Xiu Xihua Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2305-2338,共34页
This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstru... This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element. 展开更多
关键词 granular materials MICROMECHANICS Cosserat elastoplastic model MICROSTRUCTURES failure behaviors
下载PDF
The Effects of the Particle Size Ratio on the Behaviors of Binary Granular Materials
2
作者 Deze Yang Xihua Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期63-85,共23页
The particle size ratio(PSR)is an important parameter for binary granular materials,which may aect the microstructure and macro behaviors of granular materials.However,the eect of particle ratio on granular assembli... The particle size ratio(PSR)is an important parameter for binary granular materials,which may aect the microstructure and macro behaviors of granular materials.However,the eect of particle ratio on granular assemblies with dierent arrangements is still unclear.To explore and further clarify the eect of PSR in dierent packing structures,three types of numerical samples with regular,layered,and random packing are designed.Numerical results show that PSR has signi􀀀cant eects on binary granular samples with regular packing.The larger the PSR,the stronger the strength,the larger the modulus,and the smaller the angle between the shear band and the load direction.And a theoretical solution of the peak stress ratio vs.PSR is obtained for regular packing,and the results by DEM are in good agreement with the theoretical solution.Under layered packing,PSR has little eect on peak stress ratio due to similar microstructure obtained with the changing of PSR.The modulus slightly increased with the increase of PSR.Under random packing with small grain content of 50%,PSR has little eect in the range of 0.5–0.9,but in a larger range,larger PSR leads to greater modulus. 展开更多
关键词 Discrete element method binary granular materials particle size ratio PACKING
下载PDF
Constitutive modelling of idealised granular materials using machine learning method
3
作者 Mengmeng Wu Zhangqi Xia Jianfeng Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期1038-1051,共14页
Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced conta... Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency. 展开更多
关键词 Machine learning(ML) Multi-layer perceptron(MLP) Contact fabric granular material Discrete element method(DEM)
下载PDF
Deep Learning Predicts Stress–Strain Relations of Granular Materials Based on Triaxial Testing Data 被引量:2
4
作者 Tongming Qu Shaocheng Di +3 位作者 Y.T.Feng Min Wang Tingting Zhao Mengqi Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期129-144,共16页
This study presents an AI-based constitutive modelling framework wherein the prediction model directly learns from triaxial testing data by combining discrete element modelling(DEM)and deep learning.A constitutive lea... This study presents an AI-based constitutive modelling framework wherein the prediction model directly learns from triaxial testing data by combining discrete element modelling(DEM)and deep learning.A constitutive learning strategy is proposed based on the generally accepted frame-indifference assumption in constructing material constitutive models.The low-dimensional principal stress-strain sequence pairs,measured from discrete element modelling of triaxial testing,are used to train recurrent neural networks,and then the predicted principal stress sequence is augmented to other high-dimensional or general stress tensor via coordinate transformation.Through detailed hyperparameter investigations,it is found that long short-term memory(LSTM)and gated recurrent unit(GRU)networks have similar prediction performance in constitutive modelling problems,and both satisfactorily predict the stress responses of granular materials subjected to a given unseen strain path.Furthermore,the unique merits and ongoing challenges of data-driven constitutive models for granular materials are discussed. 展开更多
关键词 Deep learning granular materials constitutive modelling discrete element modelling coordinate transformation LSTM GRU
下载PDF
Experimental and numerical study of the blast wave decrease using sandwich panel by granular materials core 被引量:1
5
作者 Masoud Rahmani Alireza Naddaf Oskouei Amin Moslemi Petrudi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1660-1670,共11页
Among the intrinsic properties of some materials,e.g.,foams,porous materials,and granular materials,are their ability to mitigate shock waves.This paper investigated shock wave mitigation by a sandwich panel with a gr... Among the intrinsic properties of some materials,e.g.,foams,porous materials,and granular materials,are their ability to mitigate shock waves.This paper investigated shock wave mitigation by a sandwich panel with a granular core.Numerical simulations and experimental tests were performed using Autodyn hydro-code software and a shock tube,respectively.The smoothed particle hydrodynamics(SPH)method was used to model granular materials.Sawdust and pumice,whose properties were determined by several compression tests,were used as granular materials in the sandwich panel core.These granular materials possess many mechanisms,including compacting(e.g.,sawdust)and crushing(e.g.,pumice)that mitigate shock/blast wave.The results indicated the ineffectiveness of using a core with low thickness,yet it was demonstrated to be effective with high thickness.Low-thickness pumice yielded better results for wave mitigation.The use of these materials with a core with appropriate core reduces up to 88%of the shock wave.The results of the experiments and numerical simulations were compared,suggesting a good agreement between the two.This indicates the accuracy of simulation and the ability of the SPH method to modeling granular material under shock loading.The effects of grain size and the coefficient of friction between grains have also been investigated using simulation,implying that increasing the grain size and coefficient of friction between grains both reduce overpressure. 展开更多
关键词 granular materials Shock tube Blast wave Numerical simulations
下载PDF
“Relay-mode”promoting permeation of water-based fire extinguishing agent in granular materials porous media stacks
6
作者 Kang Wang Wei Tan Liyan Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期98-112,共15页
Water-based fire extinguishing agent is the main means to deal with smoldering fires.However,due to the hydrophobic properties of the particle surface,the porous medium channel provide resistance and slow down the ext... Water-based fire extinguishing agent is the main means to deal with smoldering fires.However,due to the hydrophobic properties of the particle surface,the porous medium channel provide resistance and slow down the extinguishing agent flow during the downward permeation process.To promote the liquid permeation process in such porous media,this work studied liquid imbibition process and analyzed the oscillating and attenuating process of liquid level in capillary channel by theoretical,experimental,and numerical methods.An empirical mathematical equation was proposed to describe the oscillating process,and the effects of the capillary diameter and contact angle parameters on the transportation process were analyzed.Based on this,the“relay-mode”was proposed to promote the liquid transportation forward.Finally,the transient simulation results of liquid permeation in coal stacks showed when the liquid flowed through the channel with changed diameter from large to small ones,the transportation distance was several times longer than that through the unidiameter ones.The trend of liquid“relay-mode”in capillaries can be used to promote the permeation in granular materials porous media stacks.The relevant results also provide new thoughts to develop the water-based fire extinguishing agents and then improve the firefighting efficiency of deep-seated fire in porous media stacks. 展开更多
关键词 granular materials Porous media Safety PERMEATION Water-based fire extinguishing agent
下载PDF
Applicability of discrete element method with spherical and clumped particles for constitutive study of granular materials
7
作者 Tongming Qu Min Wang Yuntian Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期240-251,共12页
Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains uncl... Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains unclear.This study attempts to answer this question by comparing DEM simulations with typical features of experimental granular materials.Three groups of models with spherical and clumped particles are investigated from four perspectives:(i)deviatoric stress and volumetric behaviour;(ii)critical state behaviour;(iii)stress-dilatancy relationship;and(iv)the evolution of principal stress ratio against axial strain.The results demonstrate that DEM with spherical or clumped particles is capable of qualitatively describing macroscopic deviatoric stress responses,volumetric behaviour,and critical state behaviour observed in experiments for granular materials.On the other hand,some qualitative deviations between experiments and the investigated DEM simulations are also observed,in terms of the stress-dilatancy behaviour and principal stress ratio against axial strain,which are proven to be critical for constitutive modelling.The results demonstrate that DEM with spherical or clumped particles may not necessarily fully capture experimental features of granular materials even from a qualitative perspective.It is thus encouraged to thoroughly validate DEM with experiments when developing constitutive models based on DEM observations. 展开更多
关键词 Discrete element method(DEM) granular materials Constitutive behaviour Deviatoric hardening model Rolling resistance model Irregular particles
下载PDF
The Material Deformation and Internal Structure Development of Granular Materials under Different Cyclic Loadings 被引量:1
8
作者 Jiao Wang Xihua Chu Jinbao Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期653-670,共18页
Common structures in engineering such as slopes,roadbeds,ballasts,etc.,are closely related to granular materials.They are usually subjected to long-term cyclic loads.This study mainly focused on the mechanical behavio... Common structures in engineering such as slopes,roadbeds,ballasts,etc.,are closely related to granular materials.They are usually subjected to long-term cyclic loads.This study mainly focused on the mechanical behaviors of randomly arranged granular materials before they reach a stable state under different cyclic loads.The variation of the maximum axial strain and the influence of CSR(cyclic stress ratio)were analyzed.The energy consumed in each cycle under constant confining stress loading condition is significantly greater than that of the fixed wall loading condition.The internal deformation evolution of granular materials is studied in detail.The deformation mode of granular material under cyclic loading at different positions inside the material is different according to the strain variation.In addition,the strain,force chain structure and contact force magnitude are combined to explore their effects on local deformation of granular materials under cyclic loading.From the perspective of the deformation form,the material sample can be divided into several regions,and the ability to adjust particle positions determines the deformation mode of different regions.The changes of local strain with the cyclic loading also reflect the contribution of particle displacements to the evolution ofmicrostructure.This research will provide insights into the understanding of granular materials behaviors under cyclic loading. 展开更多
关键词 granular material DEM cyclic loading MESOSTRUCTURED force chain
下载PDF
Modelling of the variation of granular base materials resilient modulus with material characteristics and humidity conditions
9
作者 Jean-Pascal Bilodeau Erdrick Leandro Perez-Gonzalez Ali Saeidi 《Journal of Road Engineering》 2024年第1期27-35,共9页
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines... This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics. 展开更多
关键词 Resilient modulus Degree of saturation Humidity conditions Unbound granular materials Pavement base
下载PDF
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable
10
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 granular materials History-dependence Multi-layer perceptron(MLP) Discrete element method FEM-DEM Machine learning
下载PDF
Evaluation of the coefficient of lateral stress at rest of granular materials under repetitive loading conditions
11
作者 Heerym Han Hyunwook Choo Junghee Park 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第5期1709-1721,共13页
Although the internal stress state of soils can be affected by repetitive loading,there are few studies evaluating the lateral stress(or K_(0))of soils under repetitive loading.This study investigates the changes in K... Although the internal stress state of soils can be affected by repetitive loading,there are few studies evaluating the lateral stress(or K_(0))of soils under repetitive loading.This study investigates the changes in K_(0) and directional shear wave velocity(V_(s))in samples of two granular materials with different particle shapes during repetitive loading.A modified oedometer cell equipped with bender elements and a diaphragm transducer was developed to measure the variations in the lateral stress and the shear wave velocity,under repetitive loading on the loading and unloading paths.The study produced the following results:(1)Repetitive loading on the loading path resulted in an increase in the K_(0) of test samples as a function of cyclic loading number(i),and(2)Repetitive loading on the unloading path resulted in a decrease in K_(0) according to i.The shear wave velocity ratio(i.e.V_(s)(HH)/V_(s)(VH),where the first and second letters in parentheses corresponds to the directions of wave propagation and particle motion,respectively,and V and H corresponds to the vertical and horizontal directions,respectively)according to i supports the experimental observations of this study.However,when the tested material was in lightly over-consolidated state,there was an increase in K_(0) during repetitive loading,indicating that it was the initial K_(0),rather than the loading path,which is responsible for the change in K_(0).The power model can capture the variation in the K_(0) of samples according to i.Notably,the K_(0)=1 line acts as the boundary between the increase and decrease in K_(0) under repetitive loading. 展开更多
关键词 Coefficient of lateral stress at rest Repetitive loading granular materials Shear wave velocity Stiffness anisotropy
下载PDF
A thermodynamics-based three-scale constitutive model for partially saturated granular materials
12
作者 Jianqiu Tian Enlong Liu Yuancheng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第5期1813-1831,共19页
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a... A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings. 展开更多
关键词 Unsaturated granular material Unsaturated porous material Geomaterials Multi-scale constitutive model Water retention curve Plasticity
下载PDF
Numerical simulation study on particle breakage behavior of granular materials in confined compression tests
13
作者 Yang Yu Guangsi Zhao Minghui Ren 《Particuology》 SCIE EI CAS CSCD 2023年第3期18-34,共17页
In order to study the fragmentation law,the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work.It is shown that conta... In order to study the fragmentation law,the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work.It is shown that contact and contact force during the loading process gradually transform from anisotropy to isotropy.Meanwhile,two particle failure modes caused by different contact force states are analyzed,which are single-through-crack failure and multi-short-crack failure.Considering the vertical distribution of the number of cracks and the four characteristic stress distributions(the stress related to the maximum contact force,the major principal stress,the deviatoric stress and the mean stress),it is pointed out that the stress based on the maximum contact force and the major principal stress can reflect the distribution of cracks accurately.In addition,the size effect of particle crushing indicates that small size particles are prone to break.The lateral pressure coefficient of four size particles during the loading process is analyzed to explain the reason for the size effect of particle breakage. 展开更多
关键词 granular materials Confined compression Particle breakage Meso-mechanics Discrete element method
原文传递
Effect of granular shape on radial segregation in a two-dimensional drum
14
作者 徐悦 李然 +3 位作者 迟志鹏 修文正 孙其诚 杨晖 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期509-514,共6页
Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically h... Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically have different shapes,the focus is shifting towards shape segregation.In this study,experiments are conducted by mixing cubic and spherical grains.The results indicate that spherical grains gather at the center and cubic grains are distributed around them,and the degree of segregation is low.Through experiments,a structured analysis of local regions is conducted to explain the inability to form stable segregation patterns with obviously different geometric shapes.Further,through simulations,the reasons for the central and peripheral distributions are explained by comparing velocities and the number of collisions of the grains in the flow layer. 展开更多
关键词 granular materials cubic grains shape segregation segregation mechanism
下载PDF
Fluidization and Transport of Vibrated Granular Matter:A Review of Landmark and Recent Contributions
15
作者 Peter Watson Sebastien Vincent Bonnieu Marcello Lappa 《Fluid Dynamics & Materials Processing》 EI 2024年第1期1-29,共29页
We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital i... We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital information about past findings and recent discoveries is provided in a single treatment.Special attention is paid to those works where successful synthetic routes to as-yet unknown phenomena were identified.Such landmark results are analyzed,while smoothly blending them with a history of the field and introducing possible categorizations of the prevalent dynamics.Although no classification is perfect,and it is hard to distillate general properties out of specific observations or realizations,two possible ways to interpret the existing results are defined according to the type of forcing or the emerging(ensuing)regime of motion.In particular,first results concerning the case where vibrations and gravity are concurrent(vertical shaking)are examined,then the companion situation with vibrations perpendicular to gravity(horizontal shaking)is described.Universality classes are introduced as follows:(1)Regimes where sand self-organizes leading to highly regular geometrical“pulsating”patterns(thin layer case);(2)Regimes where the material undergoes“fluidization”and develops an internal multicellular convective state(tick layers case);(3)Regimes where the free interface separating the sand from the overlying gas changes inclination or develops a kind a patterned configuration consisting of stable valleys and mountains or travelling waves;(4)Regimes where segregation is produced,i.e.,particles of a given size tend to be separated from the other grains(deep containers).Where possible,an analogy or parallelism is drawn with respect to the companion field of fluid-dynamics for which the assumption of“continuum”can be applied. 展开更多
关键词 granular materials vibrations FLUIDIZATION FLOWABILITY symmetry breaking
下载PDF
A micro-investigation on water bridge effects for unsaturated granular materials with constant water content by discrete element method
16
作者 Mengchen Li Jiyuan Luan +2 位作者 Xuguang Gao Ji-Peng Wang Abdelali Dadda 《Particuology》 SCIE EI CSCD 2023年第12期50-62,共13页
The most common state of surface soil is unsaturated.Changes in water content will substantially impact its strength,leading to geological and engineering catastrophes.This paper used LIGGGHTS software to simulate the... The most common state of surface soil is unsaturated.Changes in water content will substantially impact its strength,leading to geological and engineering catastrophes.This paper used LIGGGHTS software to simulate the water bridge effect of unsaturated granular materials with constant water content and verify the rationality of the simplification of the stress-force-fabric(SFF)relationship.The results showed that the capillary force was not isotropic,which was different from the previous study,thus it cannot be overlooked in the simplification of the SFF relationship.Moreover,the influence of water content on the macroscopic mechanical behavior of unsaturated granular materials was interpreted through the evolutions of coordination number,interparticle force,fabric and force anisotropy,and other microscopic parameters.Compared to the literature,we found that different water bridge models would not change the characteristics of the solid skeleton. 展开更多
关键词 Unsaturated granular material Water bridge effect Water content Discrete element method Stress-force-fabric(SFF)relationship
原文传递
Flow characteristics of nonspherical granular materials simulated with multi-superquadric elements 被引量:2
17
作者 Siqiang Wang Shunying Ji 《Particuology》 SCIE EI CAS CSCD 2021年第1期25-36,共12页
The superquadric equation is typically used to mathematically describe nonspherical particles and construct particle shapes with different surface sharpness and aspect ratios.However,nonspherical elements constructed ... The superquadric equation is typically used to mathematically describe nonspherical particles and construct particle shapes with different surface sharpness and aspect ratios.However,nonspherical elements constructed using the superquadric equation are strictly convex,limiting their engineering application.In this study,a multi-superquadric model based on a superquadric equation is developed.The model combines several superquadric elements that can be used to construct concave and convex particle shapes.Four tests are performed to examine the applicability of the multi-superquadric approach.The first involves a comparison of theoretical results for a single spherocylinder impacting a flat wall.The second involves the formation of a nonspherical granular bed.The third investigates the effects of the particle shape on the hopper discharge and angle of repose.The final test evaluates the mixing behaviors of granular materials within a horizontally rotating drum.These tests demonstrate the applicability of the multi-superquadric approach to nonspherical granular systems.Furthermore,the effects of particle shape on the packing density,discharge rate,angle of repose,and Lacey mixing index are discussed.Results indicate that concave particles have a lower packing density,flow rate,and mixing rate and higher angles of repose than convex particles.Interlocking of elements becomes more pronounced for concave particles and results in local cluster structures,thereby enhancing the stability of granular systems and limiting sliding or rotation between nonspherical particles. 展开更多
关键词 Multi-superquadric approach Nonspherical elements Concave particles Discrete element method granular materials
原文传递
Development of a constitutive model for rockfills and similar granular materials based on the disturbed state concept 被引量:1
18
作者 Mehdi VEISKARAMI Ali GHORBANI Mohammadreza ALAVIPOUR 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第4期365-378,共14页
Behavior of rockfills was investigated experimentally and theoretically.A series of standard triaxial compression tests were carried out on a quarried rockfill material at different stress levels.It was found that bot... Behavior of rockfills was investigated experimentally and theoretically.A series of standard triaxial compression tests were carried out on a quarried rockfill material at different stress levels.It was found that both the stress level and the shear stress ratio,like most of granular materials,controls the behavior of rockfill materials.At lower shear stress ratios the behavior is much more similar to a nonlinear elastic solid.When the shear stress goes further,the stressstrain curve shows an elasto-plastic behavior which suggests using the disturbed state concept to develop a constitutive model to predict the stress-strain behavior.The presented constitutive model complies reasonably with the experimental data. 展开更多
关键词 constitutive model granular material ROCKFILL PLASTICITY disturbed state concept stress level
原文传递
Mesoscale analysis of the suction stress characteristic curve for unsaturated granular materials
19
作者 Xiaoliang Wang Zhen Zhang +1 位作者 Jiachun Li Qingquan Liu 《Particuology》 SCIE EI CAS CSCD 2021年第3期183-192,共10页
There is still no theoretical framework accounting for linkage between seepage and deformation of unsaturated granular materials.Using a mesoscale liquid bridge model,we propose the first approach for deriving the suc... There is still no theoretical framework accounting for linkage between seepage and deformation of unsaturated granular materials.Using a mesoscale liquid bridge model,we propose the first approach for deriving the suction stress characteristic curve(SSCC).Then,we verify the method by obtaining both the soil-water characteristic curve and SSCC for cubic and tetrahedral granular packing.The approach is further validated by generating the SSCCs of granular packings with different particle size distributions.On this basis,a new two-parameter model is suggested that satisfactorily predicts the SSCCs of various real granular materials.The nonlinear variation of strength versus suction is also properly described by a new formula for three kinds of soil.We believe that this SSCC model can help resolve solid-fluid coupling in seepage and deformation problems in unsaturated granular engineering. 展开更多
关键词 Suction stress Liquid bridge Unsaturated granular material Discrete element method
原文传递
Investigations of the effects of particle morphology on granular material behaviors using a multi-sphere approach 被引量:2
20
作者 Shiva Prashanth Kumar Kodicherla Guobin Gong +2 位作者 Lei Fan Stephen Wilkinson Charles K.S.Moy 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1301-1312,共12页
This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under dra... This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under drained triaxial compression was performed by controlling two morphological descriptors,i.e.ratio of the smallest to the largest pebble diameter,x,and the maximum pebbleepebble intersection angle,b.These descriptors are vital in generating particle geometry and surface textures.It was found that the stress responses of all assemblies exhibited similar behavior and showed post-peak strainsoftening.The normalized stress ratio and volumetric strains flatten off and tended to reach a steady value after an axial strain of 40%.While the friction angles at peak state varied with different morphological descriptors,the friction angles at critical state showed no significant variation.Moreover,evolution of the average coordination numbers showed a dramatic exponential decay until an axial strain of about 15%after which it stabilized and was unaffected by further increase of axial strain.In addition,stress ratio q/p and strong fabric parameter fs d=fs m were found to follow an approximately linear relationship for each assembly.These findings emphasized the significance of the influences of particle morphology on the macroscopic and microscopic responses of granular materials. 展开更多
关键词 Discrete element method(DEM) Particle morphology granular materials Triaxial compression FABRIC
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部