A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET speci...A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET specific surface area (SBEr), total pore volume (Vr) and average pore diameter (da) were measured and cal- culated as well as process parameters such as yield of char (CY) and burn-off (B). The relationship between the pore structural parameters of the GAC from coal blend (BC-GAC) and the ones of the GACs from corresponding single coals (SC-GACs) was analyzed, in which an index, the relative error (δ), was presented to define the bias between fitted values and experimental values of these parameters of the BC-GACs. The results show that the BC-GAC keeps qualitatively the pore structural features of the SC-GACs; as concerned as the quantitative relationship, the pore structural parameters of the BC-GAC from coal blend consisting of non-caking coals can be obtained by adding proportionally the pore structural parameters of the SC-GACs with a less than 10%. Meanwhile, for the BC-GAC from coal blend containing weak caking bituminous coal, the δ increases up to 25% and the experimental pore size distribution differs greatly from the fitted one.展开更多
The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibratio...The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.展开更多
The sustainability of a city depends on the effective and efficient management of its solid waste. Waste recycling channels mainly process glass bottles for direct reuse. Some of these sectors carry out the crushing a...The sustainability of a city depends on the effective and efficient management of its solid waste. Waste recycling channels mainly process glass bottles for direct reuse. Some of these sectors carry out the crushing and grinding of end-of-life glass waste for use in civil engineering without the identification in terms of building materials being clearly established. The present study therefore aims to determine the physical and chemical characteristics of glass powders and sands resulting from the crushing and grinding of glass waste from Grand Lomé in Togo in order to consider their granular potential. Samples of sand and glass powder from the crushing and grinding of white, brown and green glass were subjected to characterization tests in the laboratory followed by analysis of the granular parameters and their modeling by Weibull’s law. The results show that the powder and the glass sand contain a high proportion of silica (SiO<sub>2</sub>) ranging from 69.11% to 70.18% and a low proportion of alumina (Al<sub>2</sub>O<sub>3</sub>) (less than 0.07) and iron (Fe<sub>2</sub>O<sub>3</sub>) (lower to 1.09). These three materials have tight and male graded grain sizes (Cu Cc omogeneous (k < 2.89). The absolute density (2 dab < 3) and the fineness modulus (Mf 2.1) make these materials probable aggregates for plaster and coating mortars. Nevertheless, an in-depth study will be made to determine a suitable formula.展开更多
基金financially supported by the National High-Tech Research and Development Program of China (No.2008AA05Z308)the National Natural Science Foundation of China (No.20776150)
文摘A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET specific surface area (SBEr), total pore volume (Vr) and average pore diameter (da) were measured and cal- culated as well as process parameters such as yield of char (CY) and burn-off (B). The relationship between the pore structural parameters of the GAC from coal blend (BC-GAC) and the ones of the GACs from corresponding single coals (SC-GACs) was analyzed, in which an index, the relative error (δ), was presented to define the bias between fitted values and experimental values of these parameters of the BC-GACs. The results show that the BC-GAC keeps qualitatively the pore structural features of the SC-GACs; as concerned as the quantitative relationship, the pore structural parameters of the BC-GAC from coal blend consisting of non-caking coals can be obtained by adding proportionally the pore structural parameters of the SC-GACs with a less than 10%. Meanwhile, for the BC-GAC from coal blend containing weak caking bituminous coal, the δ increases up to 25% and the experimental pore size distribution differs greatly from the fitted one.
基金Supported by National Natural Science Foundation of China(Grant Nos.51105092,61403106)International Science and Technology Cooperation Program of China(Grant No.2014DFR50250)the 111 Project,China(Grant No.B07018)
文摘The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.
文摘The sustainability of a city depends on the effective and efficient management of its solid waste. Waste recycling channels mainly process glass bottles for direct reuse. Some of these sectors carry out the crushing and grinding of end-of-life glass waste for use in civil engineering without the identification in terms of building materials being clearly established. The present study therefore aims to determine the physical and chemical characteristics of glass powders and sands resulting from the crushing and grinding of glass waste from Grand Lomé in Togo in order to consider their granular potential. Samples of sand and glass powder from the crushing and grinding of white, brown and green glass were subjected to characterization tests in the laboratory followed by analysis of the granular parameters and their modeling by Weibull’s law. The results show that the powder and the glass sand contain a high proportion of silica (SiO<sub>2</sub>) ranging from 69.11% to 70.18% and a low proportion of alumina (Al<sub>2</sub>O<sub>3</sub>) (less than 0.07) and iron (Fe<sub>2</sub>O<sub>3</sub>) (lower to 1.09). These three materials have tight and male graded grain sizes (Cu Cc omogeneous (k < 2.89). The absolute density (2 dab < 3) and the fineness modulus (Mf 2.1) make these materials probable aggregates for plaster and coating mortars. Nevertheless, an in-depth study will be made to determine a suitable formula.