Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag pr...Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level.展开更多
Molten slag is broken up by supersonic air into droplets through the air quenching dry slag granulation technique.The breakup process of blast furnace slag directly determines the droplet diameter and the waste heat r...Molten slag is broken up by supersonic air into droplets through the air quenching dry slag granulation technique.The breakup process of blast furnace slag directly determines the droplet diameter and the waste heat recovery.In order to gain deep insight into the granulation mechanism and visualize the breakup process,three-dimensional unsteady numerical simulation based on the k-x based shear stress transport turbulence model was conducted to simulate the transient breakup process of molten slag(k is the turbulent kinetic energy,and x is the specific dissipation rate).The coupled level-set and volume-of-fluid method was utilized to capture the sharp air–liquid interface.The results show that a flat film is formed firstly under the effects of air impingement,recirculation zone and pressure gradients.Then,the axial wave and the spanwise wave appear simultaneously and the film is broken up into ligaments owing to the generation of vortex and hole structure at the intersection of axial trough and spanwise trough.Finally,the ligaments are broken up into droplets owing to Rayleigh–Taylor instability at the air–liquid interface.The droplets smaller than 3.00 mm account for 80%,with the average diameter of 1.95 mm.展开更多
基金Funded by the National Science and Technology Support Plan (No.2006BAD11B03)Shaanxi Provincial Natural Science Foundation(No.SJ08E111)
文摘Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level.
基金This research was supported by the National Key Research and Development Project of China(2016YFB0601403).
文摘Molten slag is broken up by supersonic air into droplets through the air quenching dry slag granulation technique.The breakup process of blast furnace slag directly determines the droplet diameter and the waste heat recovery.In order to gain deep insight into the granulation mechanism and visualize the breakup process,three-dimensional unsteady numerical simulation based on the k-x based shear stress transport turbulence model was conducted to simulate the transient breakup process of molten slag(k is the turbulent kinetic energy,and x is the specific dissipation rate).The coupled level-set and volume-of-fluid method was utilized to capture the sharp air–liquid interface.The results show that a flat film is formed firstly under the effects of air impingement,recirculation zone and pressure gradients.Then,the axial wave and the spanwise wave appear simultaneously and the film is broken up into ligaments owing to the generation of vortex and hole structure at the intersection of axial trough and spanwise trough.Finally,the ligaments are broken up into droplets owing to Rayleigh–Taylor instability at the air–liquid interface.The droplets smaller than 3.00 mm account for 80%,with the average diameter of 1.95 mm.