Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seri...Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seriously exists in the co-channel Densely Deployed Femtocell Network(DDFN).Since the Femtocell Access Points(FAPs) are randomly deployed by their customers,the interference cannot be predicted in advance.Meanwhile,new characteristics such as the short radius of femtocell and the small number of users lead to the inefficiency of the traditional frequency reuse algorithms such as Fractional Frequency Reuse(FFR).Aiming for the downlink interference coordination in the DDFN,in this paper,we propose a User-oriented Graph based Frequency Allocation(UGFA)algorithm.Firstly,we construct the interference graph for users in the network.Secondly,we study the conventional graph based resources allocation algorithm.Then an improved two steps graph based frequency allocation mechanism is proposed.Simulation results show that UGFA has a high frequency reuse ratio mean while guarantees a better throughput.展开更多
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modalit...Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.展开更多
The specific emitter identification (SEI) technique some external feature measurements of the signal. determines the unique emitter of a given signal by using It has recently attracted a great deal of attention beca...The specific emitter identification (SEI) technique some external feature measurements of the signal. determines the unique emitter of a given signal by using It has recently attracted a great deal of attention because many applications can benefit from it. This work addresses the SEI problem using two methods, namely, the normalized visibility graph entropy (NVGE) and the normalized horizontal visibility graph entropy (NHVGE) based on treating emitters as nonlinear dynamical systems. Firstly, the visibility graph (VG) and the horizontal visibility graph (HVG) are used to convert the instantaneous amplitude, phase and frequency of received signals into graphs. Then, based on the information captured by the VG and the HVG, the normalized Shannon entropy (NSE) calculated from the corresponding degree distributions are utilized as the rf fingerprint. Finally, four emitters from the same manufacturer are utilized to evaluate the performance of the two methods. Experimental results demonstrate that both the NHVGE-based method and NVGE-based method are quite effective and they perform much better than the method based on the normalized permutation entropy (NPE) in the case of a small amount of data. The NVGE-based method performs better than the NHVGE-based method since the VG can extract more information than the HVG does. Moreover, our methods do not distinguish between the transient signal and the steady-state signal, making it practical.展开更多
The identification between chaotic systems and stochastic processes is not easy since they have numerous similarities. In this study, we propose a novel approach to distinguish between chaotic systems and stochastic p...The identification between chaotic systems and stochastic processes is not easy since they have numerous similarities. In this study, we propose a novel approach to distinguish between chaotic systems and stochastic processes based on the component reordering procedure and the visibility graph algorithm. It is found that time series and their reordered components will show diverse characteristics in the 'visibility domain'. For chaotic series, there are huge differences between the degree distribution obtained from the original series and that obtained from the corresponding reordered component. For correlated stochastic series, there are only small differences between the two degree distributions. For uncorrelated stochastic series, there are slight differences between them. Based on this discovery, the well-known Kullback Leible divergence is used to quantify the difference between the two degree distributions and to distinguish between chaotic systems, correlated and uncorrelated stochastic processes. Moreover, one chaotic map, three chaotic systems and three different stochastic processes are utilized to illustrate the feasibility and effectiveness of the proposed method. Numerical results show that the proposed method is not only effective to distinguish between chaotic systems, correlated and uncorrelated stochastic processes, but also easy to operate.展开更多
Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronizati...Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.展开更多
We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral grap...We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.展开更多
We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths...We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To展开更多
District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency i...District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency is further enhanced by the capacity of these networks to integrate renewable heat sources and thermal storage systems. However, integration of these systems adds complexity to the physical dynamics of the network, necessitating complex dynamic simulation models. These dynamic physical simulations are computationally expensive, limiting their adoption, particularly in large-scale networks. To address this challenge, we propose a methodology utilizing Artificial Neural Networks (ANNs) to reduce the computational time associated with the DHNs dynamic simulations. Our approach consists in replacing predefined clusters of substations within the DHNs with trained surrogate ANNs models, effectively transforming these clusters into single nodes. This creates a hybrid simulation framework combining the predictions of the ANNs models with the accurate physical simulations of remaining substation nodes and pipes. We evaluate different architectures of Artificial Neural Network on diverse clusters from four synthetic DHNs with realistic heating demands. Results demonstrate that ANNs effectively learn cluster dynamics irrespective of topology or heating demand levels. Through our experiments, we achieved a 27% reduction in simulation time by replacing 39% of consumer nodes while maintaining acceptable accuracy in preserving the generated heat powers by sources.展开更多
The base graph of a simple matroid M = (E, A) is the graph G such that V(G) = A and E(G) = {BB': B, B' B, [B / B'| = 1}, where the same notation is used for the vertices of G and the bases of M. It is prov...The base graph of a simple matroid M = (E, A) is the graph G such that V(G) = A and E(G) = {BB': B, B' B, [B / B'| = 1}, where the same notation is used for the vertices of G and the bases of M. It is proved that the base graph G of connected simple matroid M is Z3-connected if |V(G)| ≥5. We also proved that if M is not a connected simple matroid, then the base graph G of M does not admit a nowhere-zero 3-flow if and only if IV(G)[ =4. Furthermore, if for every connected component Ei ( i≥ 2) of M, the matroid base graph Gi of Mi=MIEi has IV(Gi)|≥5, then G is Z3-connected which also implies that G admits nowhere-zero 3-flow immediately.展开更多
The spectral moments are the important algebraic invariants of graphs.In this paper,on the basis of definitions of tricyclic graphs,base and the sequence of spectral moments,respectively,we study tricyclic graphs with...The spectral moments are the important algebraic invariants of graphs.In this paper,on the basis of definitions of tricyclic graphs,base and the sequence of spectral moments,respectively,we study tricyclic graphs with given bases on the lexicographical order of the spectral moments sequence,and find the last and the first graphs.The results is very helpful for studying all tricyclic graphs ordering by spectral moments.展开更多
This paper proposes a semi-supervised inductive algorithm adopting a Gaussian random field(GRF)and Gaussian process.We introduce the prior based on graph regularization.This regularization term measures the p-smoothne...This paper proposes a semi-supervised inductive algorithm adopting a Gaussian random field(GRF)and Gaussian process.We introduce the prior based on graph regularization.This regularization term measures the p-smoothness over the graph.A new conditional probability called the extended Bernoulli model(EBM)is also proposed.EBM generalizes the logistic regression to the semi-supervised case,and especially,it can naturally represent the margin.In the training phase,a novel solution is given to the discrete regularization framework defined on the graphs.For the new test data,we present the prediction formulation,and explain how the margin model affects the classification boundary.A hyper-parameter estimation method is also developed.Experimental results show that our method is competitive with the existing semi-supervised inductive and transductive methods.展开更多
Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans- formations, and therefore the quality of the generated software artifacts. Verified/validated model...Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans- formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61372092the China National Science and Technology Major Projects on New Generation Broadband Wireless Mobile Communications Network under Grants No.2011ZX03005-004,No.2012ZX03001029-003,No.2012ZX03001008-003
文摘Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seriously exists in the co-channel Densely Deployed Femtocell Network(DDFN).Since the Femtocell Access Points(FAPs) are randomly deployed by their customers,the interference cannot be predicted in advance.Meanwhile,new characteristics such as the short radius of femtocell and the small number of users lead to the inefficiency of the traditional frequency reuse algorithms such as Fractional Frequency Reuse(FFR).Aiming for the downlink interference coordination in the DDFN,in this paper,we propose a User-oriented Graph based Frequency Allocation(UGFA)algorithm.Firstly,we construct the interference graph for users in the network.Secondly,we study the conventional graph based resources allocation algorithm.Then an improved two steps graph based frequency allocation mechanism is proposed.Simulation results show that UGFA has a high frequency reuse ratio mean while guarantees a better throughput.
基金supported by the National Natural Science Foundation of China grants 61836014 to CL,and the STI2030‐Major Projects(2022ZD0205100)the Strategic Priority Research Program of Chinese Academy of Science,Grant No.XDB32010300+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX05)the Innovation Academy of Artificial Intelligence,Chinese Academy of Sciences to ZW.
文摘Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.
基金Supported by the National Natural Science Foundation of China under Grant No U1530126the Fundamental Research Funds for the Central Universities under Grant No ZYGX2015J022
文摘The specific emitter identification (SEI) technique some external feature measurements of the signal. determines the unique emitter of a given signal by using It has recently attracted a great deal of attention because many applications can benefit from it. This work addresses the SEI problem using two methods, namely, the normalized visibility graph entropy (NVGE) and the normalized horizontal visibility graph entropy (NHVGE) based on treating emitters as nonlinear dynamical systems. Firstly, the visibility graph (VG) and the horizontal visibility graph (HVG) are used to convert the instantaneous amplitude, phase and frequency of received signals into graphs. Then, based on the information captured by the VG and the HVG, the normalized Shannon entropy (NSE) calculated from the corresponding degree distributions are utilized as the rf fingerprint. Finally, four emitters from the same manufacturer are utilized to evaluate the performance of the two methods. Experimental results demonstrate that both the NHVGE-based method and NVGE-based method are quite effective and they perform much better than the method based on the normalized permutation entropy (NPE) in the case of a small amount of data. The NVGE-based method performs better than the NHVGE-based method since the VG can extract more information than the HVG does. Moreover, our methods do not distinguish between the transient signal and the steady-state signal, making it practical.
基金Supported by the National Natural Science Foundation of China under Grant No U1530126
文摘The identification between chaotic systems and stochastic processes is not easy since they have numerous similarities. In this study, we propose a novel approach to distinguish between chaotic systems and stochastic processes based on the component reordering procedure and the visibility graph algorithm. It is found that time series and their reordered components will show diverse characteristics in the 'visibility domain'. For chaotic series, there are huge differences between the degree distribution obtained from the original series and that obtained from the corresponding reordered component. For correlated stochastic series, there are only small differences between the two degree distributions. For uncorrelated stochastic series, there are slight differences between them. Based on this discovery, the well-known Kullback Leible divergence is used to quantify the difference between the two degree distributions and to distinguish between chaotic systems, correlated and uncorrelated stochastic processes. Moreover, one chaotic map, three chaotic systems and three different stochastic processes are utilized to illustrate the feasibility and effectiveness of the proposed method. Numerical results show that the proposed method is not only effective to distinguish between chaotic systems, correlated and uncorrelated stochastic processes, but also easy to operate.
基金National Natural Science Foundation of China(No.61272432)Qingdao Science and Technology Development Plan(No.12-1-4-6-(10)-jch)
文摘Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.
基金supported by the National Natural Science Foundation of China (No.60375003)the Aeronautics and Astronautics Basal Science Foundation of China (No.03I53059)the Science and Technology Innovation Foundation of Northwestern Polytechnical University (No.2007KJ01033)
文摘We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.
基金supported by Key Project No. 61332015 of the National Natural Science Foundation of ChinaProject Nos.ZR2013FM302 and ZR2017MF057 of the Natural Science Found of Shandong
文摘We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To
文摘District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency is further enhanced by the capacity of these networks to integrate renewable heat sources and thermal storage systems. However, integration of these systems adds complexity to the physical dynamics of the network, necessitating complex dynamic simulation models. These dynamic physical simulations are computationally expensive, limiting their adoption, particularly in large-scale networks. To address this challenge, we propose a methodology utilizing Artificial Neural Networks (ANNs) to reduce the computational time associated with the DHNs dynamic simulations. Our approach consists in replacing predefined clusters of substations within the DHNs with trained surrogate ANNs models, effectively transforming these clusters into single nodes. This creates a hybrid simulation framework combining the predictions of the ANNs models with the accurate physical simulations of remaining substation nodes and pipes. We evaluate different architectures of Artificial Neural Network on diverse clusters from four synthetic DHNs with realistic heating demands. Results demonstrate that ANNs effectively learn cluster dynamics irrespective of topology or heating demand levels. Through our experiments, we achieved a 27% reduction in simulation time by replacing 39% of consumer nodes while maintaining acceptable accuracy in preserving the generated heat powers by sources.
文摘The base graph of a simple matroid M = (E, A) is the graph G such that V(G) = A and E(G) = {BB': B, B' B, [B / B'| = 1}, where the same notation is used for the vertices of G and the bases of M. It is proved that the base graph G of connected simple matroid M is Z3-connected if |V(G)| ≥5. We also proved that if M is not a connected simple matroid, then the base graph G of M does not admit a nowhere-zero 3-flow if and only if IV(G)[ =4. Furthermore, if for every connected component Ei ( i≥ 2) of M, the matroid base graph Gi of Mi=MIEi has IV(Gi)|≥5, then G is Z3-connected which also implies that G admits nowhere-zero 3-flow immediately.
基金Supported by the Wuhan Science and Technology Projec(201250499145-20)Hubei Construction Science and Technology Projec(2011)
文摘The spectral moments are the important algebraic invariants of graphs.In this paper,on the basis of definitions of tricyclic graphs,base and the sequence of spectral moments,respectively,we study tricyclic graphs with given bases on the lexicographical order of the spectral moments sequence,and find the last and the first graphs.The results is very helpful for studying all tricyclic graphs ordering by spectral moments.
基金This work was supported by the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology(TNList).
文摘This paper proposes a semi-supervised inductive algorithm adopting a Gaussian random field(GRF)and Gaussian process.We introduce the prior based on graph regularization.This regularization term measures the p-smoothness over the graph.A new conditional probability called the extended Bernoulli model(EBM)is also proposed.EBM generalizes the logistic regression to the semi-supervised case,and especially,it can naturally represent the margin.In the training phase,a novel solution is given to the discrete regularization framework defined on the graphs.For the new test data,we present the prediction formulation,and explain how the margin model affects the classification boundary.A hyper-parameter estimation method is also developed.Experimental results show that our method is competitive with the existing semi-supervised inductive and transductive methods.
基金Project partially supported by the European Union and the European Social Fund(No.TAMOP-4.2.2.C-11/1/KONV-2012-0013)
文摘Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans- formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations.