We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral grap...We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.展开更多
We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths...We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To展开更多
基金supported by the National Natural Science Foundation of China (No.60375003)the Aeronautics and Astronautics Basal Science Foundation of China (No.03I53059)the Science and Technology Innovation Foundation of Northwestern Polytechnical University (No.2007KJ01033)
文摘We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.
基金supported by Key Project No. 61332015 of the National Natural Science Foundation of ChinaProject Nos.ZR2013FM302 and ZR2017MF057 of the Natural Science Found of Shandong
文摘We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To