Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ...Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.展开更多
Subgraph matching problem is identifying a target subgraph in a graph. Graph neural network (GNN) is an artificial neural network model which is capable of processing general types of graph structured data. A graph ma...Subgraph matching problem is identifying a target subgraph in a graph. Graph neural network (GNN) is an artificial neural network model which is capable of processing general types of graph structured data. A graph may contain many subgraphs isomorphic to a given target graph. In this paper GNN is modeled to identify a subgraph that matches the target graph along with its characteristics. The simulation results show that GNN is capable of identifying a target sub-graph in a graph.展开更多
With the development of information technology, the amount of power grid topology data has gradually increased. Therefore, accurate querying of this data has become particularly important. Several researchers have cho...With the development of information technology, the amount of power grid topology data has gradually increased. Therefore, accurate querying of this data has become particularly important. Several researchers have chosen different indexing methods in the filtering stage to obtain more optimized query results because currently there is no uniform and efficient indexing mechanism that achieves good query results. In the traditional algorithm, the hash table for index storage is prone to "collision" problems, which decrease the index construction efficiency. Aiming at the problem of quick index entry, based on the construction of frequent subgraph indexes, a method of serialized storage optimization based on multiple hash tables is proposed. This method mainly uses the exploration sequence to make the keywords evenly distributed; it avoids conflicts of the stored procedure and performs a quick search of the index. The proposed algorithm mainly adopts the "filterverify" mechanism; in the filtering stage, the index is first established offline, and then the frequent subgraphs are found using the "contains logic" rule to obtain the candidate set. Experimental results show that this method can reduce the time and scale of candidate set generation and improve query efficiency.展开更多
The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer s...The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.展开更多
Alavi and his fellows defined the concept of ascending subgraph decomposition of a graph and conjectured that every graph with positive size has an ascending subgraph decomposition in paper [1]. Paper [2] proved that ...Alavi and his fellows defined the concept of ascending subgraph decomposition of a graph and conjectured that every graph with positive size has an ascending subgraph decomposition in paper [1]. Paper [2] proved that K n-R n-1 has a star ascending subgraph decomposition,here K n is the complete graph with order n and R n-1 is a subgraph of K n with size at most n-1. In paper [3],Ma Kejie and Chen Huaitang proved that K n-R n has an ascending subgraph decomposition when the size of R n is not greater than n. In this paper we will prove K n-R has an ascending subgraph decomposition when the size of R is less than 3n/2. This paper will also give the concept of comet and prove that K n-R n-1 has a comet ascending subgraph decomposition.展开更多
The generating function for generating integer sequence of Aunu numbers of prime cardinality was reported earlier by the author in [1]. This paper assigns an operator on the function for where the op...The generating function for generating integer sequence of Aunu numbers of prime cardinality was reported earlier by the author in [1]. This paper assigns an operator on the function for where the operation induces addition or subtraction on the pairs of ai, aj elements which are consecutive pairs of elements obtained from a generating set of some finite order. The paper identifies that the set of the generated pairs of integer sequence is non-associative. The paper also presents the graph theoretic applications of the integers generated in which subgraphs are deduced from the main graph and adjacency matrices and incidence matrices constructed. It was also established that some of the subgraphs were found to be regular graphs. The findings in this paper can further be used in coding theory, Boolean algebra and circuit designs.展开更多
The definition of the ascending subgraph decomposition was given by Alavi. It has been conjectured that every graph of positive size has an ascending subgraph decomposition. In this paper it is proved that the regular...The definition of the ascending subgraph decomposition was given by Alavi. It has been conjectured that every graph of positive size has an ascending subgraph decomposition. In this paper it is proved that the regular graphs under some conditions do have an ascending subgraph decomposition.展开更多
The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism a...The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism approach to discover several design patterns in a legacy system at a time. The attributed relational graph is used to describe design patterns and legacy systems. The sub-graph isomorphism approach consists of decomposition and composition process. During the decomposition process, graphs corresponding to the design patterns are decomposed into sub-graphs, some of which are graphs corresponding to the elemental design patterns. The composition process tries to get sub-graph isomorphism of the matched graph if sub-graph isomorphism of each subgraph is obtained. Due to the common structures between design patterns, the proposed approach can reduce the matching times of entities and relations. Compared with the existing methods, the proposed algorithm is not linearly dependent on the number of design pattern graphs. Key words design pattern mining - attributed relational graph - subgraph isomorphism CLC number TP 311.5 Foundation item: Supported by the National Natural Science Foundation of China (60273075) and the Science Foundation of Naval University of Engineering (HGDJJ03019)Biography: LI Qing-hua (1940-), male, Professor, research direction: parallel computing.展开更多
Currently,most existing inductive relation prediction approaches are based on subgraph structures,with subgraph features extracted using graph neural networks to predict relations.However,subgraphs may contain disconn...Currently,most existing inductive relation prediction approaches are based on subgraph structures,with subgraph features extracted using graph neural networks to predict relations.However,subgraphs may contain disconnected regions,which usually represent different semantic ranges.Because not all semantic information about the regions is helpful in relation prediction,we propose a relation prediction model based on a disentangled subgraph structure and implement a feature updating approach based on relevant semantic aggregation.To indirectly achieve the disentangled subgraph structure from a semantic perspective,the mapping of entity features into different semantic spaces and the aggregation of related semantics on each semantic space are updated.The disentangled model can focus on features having higher semantic relevance in the prediction,thus addressing a problem with existing approaches,which ignore the semantic differences in different subgraph structures.Furthermore,using a gated recurrent neural network,this model enhances the features of entities by sorting them by distance and extracting the path information in the subgraphs.Experimentally,it is shown that when there are numerous disconnected regions in the subgraph,our model outperforms existing mainstream models in terms of both Area Under the Curve-Precision-Recall(AUC-PR)and Hits@10.Experiments prove that semantic differences in the knowledge graph can be effectively distinguished and verify the effectiveness of this method.展开更多
Two new hereditary classes of P 5-free graphs where the stability number can be found in polynomial time are proposed.They generalize several known results.
Graph pattern matching(GPM)can be used to mine the key information in graphs.Exact GPM is one of the most commonly used methods among all the GPM-related methods,which aims to exactly find all subgraphs for a given qu...Graph pattern matching(GPM)can be used to mine the key information in graphs.Exact GPM is one of the most commonly used methods among all the GPM-related methods,which aims to exactly find all subgraphs for a given query graph in a data graph.The exact GPM has been widely used in biological data analyses,social network analyses and other fields.In this paper,the applications of the exact GPM were first introduced,and the research progress of the exact GPM was summarized.Then,the related algorithms were introduced in detail,and the experiments on the state-of-the-art exact GPM algorithms were conducted to compare their performance.Based on the experimental results,the applicable scenarios of the algorithms were pointed out.New research opportunities in this area were proposed.展开更多
In this paper, we obtain explicit formulae for the number of 7-cycles and the total number of cycles of lengths 6 and 7 which contain a specific vertex v<sub>i</sub> in a simple graph G, in terms of the ad...In this paper, we obtain explicit formulae for the number of 7-cycles and the total number of cycles of lengths 6 and 7 which contain a specific vertex v<sub>i</sub> in a simple graph G, in terms of the adjacency matrix and with the help of combinatorics.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grants 62273272,62303375 and 61873277in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243+2 种基金in part by the Natural Science Foundation of Shaanxi Province under Grants 2022JQ-606 and 2020-JQ758in part by the Research Plan of Department of Education of Shaanxi Province under Grant 21JK0752in part by the Youth Innovation Team of Shaanxi Universities.
文摘Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.
文摘Subgraph matching problem is identifying a target subgraph in a graph. Graph neural network (GNN) is an artificial neural network model which is capable of processing general types of graph structured data. A graph may contain many subgraphs isomorphic to a given target graph. In this paper GNN is modeled to identify a subgraph that matches the target graph along with its characteristics. The simulation results show that GNN is capable of identifying a target sub-graph in a graph.
基金supported by the State Grid Science and Technology Project (Title: Research on High Performance Analysis Technology of Power Grid GIS Topology Based on Graph Database, 5455HJ160005)
文摘With the development of information technology, the amount of power grid topology data has gradually increased. Therefore, accurate querying of this data has become particularly important. Several researchers have chosen different indexing methods in the filtering stage to obtain more optimized query results because currently there is no uniform and efficient indexing mechanism that achieves good query results. In the traditional algorithm, the hash table for index storage is prone to "collision" problems, which decrease the index construction efficiency. Aiming at the problem of quick index entry, based on the construction of frequent subgraph indexes, a method of serialized storage optimization based on multiple hash tables is proposed. This method mainly uses the exploration sequence to make the keywords evenly distributed; it avoids conflicts of the stored procedure and performs a quick search of the index. The proposed algorithm mainly adopts the "filterverify" mechanism; in the filtering stage, the index is first established offline, and then the frequent subgraphs are found using the "contains logic" rule to obtain the candidate set. Experimental results show that this method can reduce the time and scale of candidate set generation and improve query efficiency.
文摘The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.
文摘Alavi and his fellows defined the concept of ascending subgraph decomposition of a graph and conjectured that every graph with positive size has an ascending subgraph decomposition in paper [1]. Paper [2] proved that K n-R n-1 has a star ascending subgraph decomposition,here K n is the complete graph with order n and R n-1 is a subgraph of K n with size at most n-1. In paper [3],Ma Kejie and Chen Huaitang proved that K n-R n has an ascending subgraph decomposition when the size of R n is not greater than n. In this paper we will prove K n-R has an ascending subgraph decomposition when the size of R is less than 3n/2. This paper will also give the concept of comet and prove that K n-R n-1 has a comet ascending subgraph decomposition.
文摘The generating function for generating integer sequence of Aunu numbers of prime cardinality was reported earlier by the author in [1]. This paper assigns an operator on the function for where the operation induces addition or subtraction on the pairs of ai, aj elements which are consecutive pairs of elements obtained from a generating set of some finite order. The paper identifies that the set of the generated pairs of integer sequence is non-associative. The paper also presents the graph theoretic applications of the integers generated in which subgraphs are deduced from the main graph and adjacency matrices and incidence matrices constructed. It was also established that some of the subgraphs were found to be regular graphs. The findings in this paper can further be used in coding theory, Boolean algebra and circuit designs.
文摘The definition of the ascending subgraph decomposition was given by Alavi. It has been conjectured that every graph of positive size has an ascending subgraph decomposition. In this paper it is proved that the regular graphs under some conditions do have an ascending subgraph decomposition.
文摘The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism approach to discover several design patterns in a legacy system at a time. The attributed relational graph is used to describe design patterns and legacy systems. The sub-graph isomorphism approach consists of decomposition and composition process. During the decomposition process, graphs corresponding to the design patterns are decomposed into sub-graphs, some of which are graphs corresponding to the elemental design patterns. The composition process tries to get sub-graph isomorphism of the matched graph if sub-graph isomorphism of each subgraph is obtained. Due to the common structures between design patterns, the proposed approach can reduce the matching times of entities and relations. Compared with the existing methods, the proposed algorithm is not linearly dependent on the number of design pattern graphs. Key words design pattern mining - attributed relational graph - subgraph isomorphism CLC number TP 311.5 Foundation item: Supported by the National Natural Science Foundation of China (60273075) and the Science Foundation of Naval University of Engineering (HGDJJ03019)Biography: LI Qing-hua (1940-), male, Professor, research direction: parallel computing.
基金supported by the National Natural Science Foundation of China(No.U19A2059)the 2022 Research Foundation of Chengdu Textile College(No.X22032161).
文摘Currently,most existing inductive relation prediction approaches are based on subgraph structures,with subgraph features extracted using graph neural networks to predict relations.However,subgraphs may contain disconnected regions,which usually represent different semantic ranges.Because not all semantic information about the regions is helpful in relation prediction,we propose a relation prediction model based on a disentangled subgraph structure and implement a feature updating approach based on relevant semantic aggregation.To indirectly achieve the disentangled subgraph structure from a semantic perspective,the mapping of entity features into different semantic spaces and the aggregation of related semantics on each semantic space are updated.The disentangled model can focus on features having higher semantic relevance in the prediction,thus addressing a problem with existing approaches,which ignore the semantic differences in different subgraph structures.Furthermore,using a gated recurrent neural network,this model enhances the features of entities by sorting them by distance and extracting the path information in the subgraphs.Experimentally,it is shown that when there are numerous disconnected regions in the subgraph,our model outperforms existing mainstream models in terms of both Area Under the Curve-Precision-Recall(AUC-PR)and Hits@10.Experiments prove that semantic differences in the knowledge graph can be effectively distinguished and verify the effectiveness of this method.
基金The first author was supported by DIMACS Summer2 0 0 3Award
文摘Two new hereditary classes of P 5-free graphs where the stability number can be found in polynomial time are proposed.They generalize several known results.
文摘Graph pattern matching(GPM)can be used to mine the key information in graphs.Exact GPM is one of the most commonly used methods among all the GPM-related methods,which aims to exactly find all subgraphs for a given query graph in a data graph.The exact GPM has been widely used in biological data analyses,social network analyses and other fields.In this paper,the applications of the exact GPM were first introduced,and the research progress of the exact GPM was summarized.Then,the related algorithms were introduced in detail,and the experiments on the state-of-the-art exact GPM algorithms were conducted to compare their performance.Based on the experimental results,the applicable scenarios of the algorithms were pointed out.New research opportunities in this area were proposed.
文摘In this paper, we obtain explicit formulae for the number of 7-cycles and the total number of cycles of lengths 6 and 7 which contain a specific vertex v<sub>i</sub> in a simple graph G, in terms of the adjacency matrix and with the help of combinatorics.