With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wi...With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wide applications in flexible LIBs. However, due to the prone-to-restacking feature of graphene layers, a long cycle life at high current densities is rather difficult to be achieved. Herein, a unique threedimensional(3D) hierarchically porous NiO micro-flowers/graphene paper(fNiO/GP) electrode is successfully fabricated. The resulting fNiO/GP electrode shows superior long-term cycling stability at high rates(e.g., storage capacity of 359 mAh/g after 600 cycles at a high current density of 1 A/g). The facile 3D porous structure combines both the advantages of the graphene that is highly conductive and flexible to ensure rapid electrons/ions transfer and buffer the volume expansion of NiO during charge/discharge,and of the micro-sized NiO flowers that induces hierarchical between-layer pores ranging from nanomicro meters to promote the penetration of the electrolyte and prevent the re-stacking of graphene layers. Such structural design will inspire future manufacture of a wide range of active materials/graphene composite electrodes for high performance flexible LIBs.展开更多
基金financially supported by the National Key R&D Program of China (No.2017YFE0111500)the National Natural Science Foundation of China (No.51673123 and 51222305)Sichuan Province Science and Technology Project (No.2016JQ0049)。
文摘With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wide applications in flexible LIBs. However, due to the prone-to-restacking feature of graphene layers, a long cycle life at high current densities is rather difficult to be achieved. Herein, a unique threedimensional(3D) hierarchically porous NiO micro-flowers/graphene paper(fNiO/GP) electrode is successfully fabricated. The resulting fNiO/GP electrode shows superior long-term cycling stability at high rates(e.g., storage capacity of 359 mAh/g after 600 cycles at a high current density of 1 A/g). The facile 3D porous structure combines both the advantages of the graphene that is highly conductive and flexible to ensure rapid electrons/ions transfer and buffer the volume expansion of NiO during charge/discharge,and of the micro-sized NiO flowers that induces hierarchical between-layer pores ranging from nanomicro meters to promote the penetration of the electrolyte and prevent the re-stacking of graphene layers. Such structural design will inspire future manufacture of a wide range of active materials/graphene composite electrodes for high performance flexible LIBs.