Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th...The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively.展开更多
Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amin...Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amino ethyl methacrylate)(PDMAEMA) brush nanocomposites(GOP1, GOP2, GOP3, and GOP4) were fabricated using atom transfer radical polymerization(ATRP) by the “graft from” method.The resulting nanocomposites were utilized for removing Cr(Ⅵ) with good adsorption performance due to the electrostatic interaction of protonated nitrogen groups in the brush chains with negatively charged particles in the solution. The kinetic model of pseudo-second-order best represented the contaminants' adsorption characteristics. The Weber-Morris model further indicated that surface adsorption and intraparticle diffusion mechanisms primarily controlled the adsorption procedure. Additionally, the Langmuir and Temkin isotherm models were found to most accurately represent the adsorption characteristics of the pollutants on the nanocomposites, and GOP4 can achieve the maximum adsorption capacity of 164.4 mg·g^(-1). The adsorbents' capacity maintains above 85% after five cycles of adsorption-desorption. The nanocomposites in this study demonstrate promising potential for eliminating Cr(Ⅵ) from aqueous solutions.展开更多
Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by ...Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by the“bricks-and-mortar”structure,we prepared layered graphene oxide(GO)composite finishes strengthened with polyvinyl alcohol(PVA)and borax.Our study demonstrates that the tribological properties of the GO-based coating on 304 stainless steel(SS304)are potentially greatly affected through PVA,GO,and annealing.By optimizing the composition,we achieved the PVA_(40 wt%)/GO_(0.01 wt%)/borax composite coating,which exhibited the lowest average coefficient of friction(COF)of 0.021±0.003(a 97.86%reduction compared to control SS304)with minimal wear and abrasion even in a water environment.We found that the enhanced mechanical characteristics as well as elastic recovery within the coating were attributed to the hydrogen bonds and cross-linking between PVA and borax,which led to stress distribution.Reduced friction was further aided by the formation of a hydrated layer at the friction interface.As a result,the coating demonstrated remarkable durability,maintaining a low COF during long sliding distances(576 m,28,800 cycles,significantly longer than previously reported)without breaking.展开更多
Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity ...Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity to simultaneously absorb water and oil,which restricts their range of applications.In this study,a reduced graphene oxide and titanium dioxide nanocomposite(rGO/TiO_(2))was used to fabricate an ultra-hydrophobic melamine sponge(MS)through interfacial modification using a solution immersion technique.To further modify it,poly-dimethylsiloxane(PDMS)was grafted onto its surface to establish stronger covalent bonds with the composite.The water contact angle of the sponge(rGO/TiO_(2)/PDMS/MS)was 164.2°,which satisfies the condition for ultrahydrophobicity.The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect.As a result of the increased density of rGO/TiO_(2)/PDMS/MS,it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption.The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption,while rGO/TiO_(2)/PDMS/MS retained 97%,suggesting good recyclability.Excellent oil and organic solvent recovery(90%-96%)was demonstrated by rGO/TiO_(2)/PDMS/MS in oil-water combinations.In a continuous separation system,it achieved a remarkable separation efficiency of 2.4×10^(6)L/(m^(3)·h),and in turbulent emulsion separation,it achieved a demulsification efficiency of 90%-91%.This study provides a practical substitute for massive oil spill cleaning.展开更多
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ...With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs.展开更多
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(...For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.展开更多
Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is mad...Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is made on the dry leaves of sugarcane(Saccharum officinarum)as an alternative raw material so as to be economical and environmentally benign.The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs.They were evaluated by UV–Vis.,FTIR,XRD,Raman spectroscopy,TGA/DTG,BET,FESEM-EDS and TEM.The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface.The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands.Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups.Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups.展开更多
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria...Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.展开更多
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica...Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.展开更多
A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial acti...A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment.展开更多
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower...Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower specific capacity in aqueous electrolytes compared to organic systems and operates through a different reaction mechanism.The application of highly conductive graphene may effectively enhance the capacity of APIBs but could complicate the potassium storage environment.In this study,a MnO_(2) cathode pre-intercalated with K~+ions and grown on graphene(KMO@rGO) was developed using the microwave hydrothermal method for APIBs.KMO@rGO achieved a specific capacity of 90 mA h g^(-1) at a current density of 0.1 A g^(-1),maintaining a capacity retention rate of>90% after 5000 cycles at 5 A g^(-1).In-situ and exsitu characterization techniques revealed the energy-storage mechanism of KMO@rGO:layered MnO_(2)traps a large amount of "dead" water molecules during K~+ions removal.However,the introduction of graphene enables these water molecules to escape during K~+ ions insertion at the cathode.The galvanostatic intermittent titration technique and density functional theory confirmed that KMO@rGO has a higher K~+ions migration rate than MnO_(2).Therefore,the capacity of this cathode depends on the interaction between dead water and K~+ions during the energy-storage reaction.The optimal structural alignment between layered MnO_(2) and graphene allows electrons to easily flow into the external circuit.Rapid charge compensation forces numerous low-solvent K~+ions to displace interlayer dead water,enhancing the capacity.This unique reaction mechanism is unprecedented in other aqueous battery studies.展开更多
Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural str...Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials.展开更多
Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2...Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2].However,the change in the oxidation degree of GO has a great effect on its chemical properties,the interaction between GO and the matrix,and the dispersion uniformity in the rubber matrix,which has a great effect on the reinforcement of rubber[3].展开更多
A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treat...A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.展开更多
To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre...To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
Anion exchange membrane fuel cell(AEMFC)technology is attracting intensive attention,due to its great potential by using non-precious-metal catalysts(NPMCs)in the cathode and cheap bipolar plate materials in alkaline ...Anion exchange membrane fuel cell(AEMFC)technology is attracting intensive attention,due to its great potential by using non-precious-metal catalysts(NPMCs)in the cathode and cheap bipolar plate materials in alkaline media.However,in such case,the kinetics of hydrogen oxidation reaction(HOR)in the anode is two orders of magnitude sluggish than that of acidic electrolytes,which is recognized as the grand challenge in this field.Herein,we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers(Ni@NG)using a facile pyrolysis strategy.Based on the density functional theory calculations and electrochemical performance analysis,it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates,thus enabling the fundamentally enhanced activity for HOR with robust stability.As a proof of concept,the resultant Ni@NG sample as the anode with a low loading(1.8 mg cm^(-2))in AEMFCs delivers a high peak power density of 500 mW cm^(-2),outperforming all of those of NPMC-based analogs ever reported.展开更多
We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.Ho...We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.However,the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting.Extracellular vesicles derived from bone marrow mesenchymal stem cells(BMSCs)can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site.In this study,12 weeks after surgery,sciatic nerve function was measured by electrophysiology and sciatic nerve function index,and myelin sheath and axon regeneration were observed by electron microscopy,immunohistochemistry,and immunofluorescence.The regeneration of microvessel was observed by immunofluorescence.Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function.These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery,and provide a new direction for the curation of peripheral nerve defect in the clinic.展开更多
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金supported by the National Natural Science Foundation of China(22178293)the Natural Science Foundation of Fujian Province of China(2022J01022)。
文摘The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively.
基金the Qatar National Research Fund for funding this work through NPRP(10-0127-170270,acknowledged under the grant code KK-2018-008).
文摘Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amino ethyl methacrylate)(PDMAEMA) brush nanocomposites(GOP1, GOP2, GOP3, and GOP4) were fabricated using atom transfer radical polymerization(ATRP) by the “graft from” method.The resulting nanocomposites were utilized for removing Cr(Ⅵ) with good adsorption performance due to the electrostatic interaction of protonated nitrogen groups in the brush chains with negatively charged particles in the solution. The kinetic model of pseudo-second-order best represented the contaminants' adsorption characteristics. The Weber-Morris model further indicated that surface adsorption and intraparticle diffusion mechanisms primarily controlled the adsorption procedure. Additionally, the Langmuir and Temkin isotherm models were found to most accurately represent the adsorption characteristics of the pollutants on the nanocomposites, and GOP4 can achieve the maximum adsorption capacity of 164.4 mg·g^(-1). The adsorbents' capacity maintains above 85% after five cycles of adsorption-desorption. The nanocomposites in this study demonstrate promising potential for eliminating Cr(Ⅵ) from aqueous solutions.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 0470202)the International Partnership Program of Chinese Academy of Sciences Project for Grand Challenges(No.307GJHZ2022034GC)+1 种基金the Science and Technology Development Fund of Pudong New District(No.PKJ2020-N007)the Fundamental Research Funds for the Central Universities(No.222201717003)for their financial support.
文摘Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by the“bricks-and-mortar”structure,we prepared layered graphene oxide(GO)composite finishes strengthened with polyvinyl alcohol(PVA)and borax.Our study demonstrates that the tribological properties of the GO-based coating on 304 stainless steel(SS304)are potentially greatly affected through PVA,GO,and annealing.By optimizing the composition,we achieved the PVA_(40 wt%)/GO_(0.01 wt%)/borax composite coating,which exhibited the lowest average coefficient of friction(COF)of 0.021±0.003(a 97.86%reduction compared to control SS304)with minimal wear and abrasion even in a water environment.We found that the enhanced mechanical characteristics as well as elastic recovery within the coating were attributed to the hydrogen bonds and cross-linking between PVA and borax,which led to stress distribution.Reduced friction was further aided by the formation of a hydrated layer at the friction interface.As a result,the coating demonstrated remarkable durability,maintaining a low COF during long sliding distances(576 m,28,800 cycles,significantly longer than previously reported)without breaking.
基金supported by the Universiti Brunei Darussalam Research Funding(Grant No.UBD/OAVCRI/CRGWG(022)/171001).
文摘Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity to simultaneously absorb water and oil,which restricts their range of applications.In this study,a reduced graphene oxide and titanium dioxide nanocomposite(rGO/TiO_(2))was used to fabricate an ultra-hydrophobic melamine sponge(MS)through interfacial modification using a solution immersion technique.To further modify it,poly-dimethylsiloxane(PDMS)was grafted onto its surface to establish stronger covalent bonds with the composite.The water contact angle of the sponge(rGO/TiO_(2)/PDMS/MS)was 164.2°,which satisfies the condition for ultrahydrophobicity.The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect.As a result of the increased density of rGO/TiO_(2)/PDMS/MS,it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption.The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption,while rGO/TiO_(2)/PDMS/MS retained 97%,suggesting good recyclability.Excellent oil and organic solvent recovery(90%-96%)was demonstrated by rGO/TiO_(2)/PDMS/MS in oil-water combinations.In a continuous separation system,it achieved a remarkable separation efficiency of 2.4×10^(6)L/(m^(3)·h),and in turbulent emulsion separation,it achieved a demulsification efficiency of 90%-91%.This study provides a practical substitute for massive oil spill cleaning.
基金Y.X.acknowledges the financial support of the Engineering and Physical Sciences Research Council(EP/X000087/1,EP/V000152/1)Leverhulme Trust(RPG-2021-138)Royal Society(IEC\NSFC\223016).
文摘With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs.
基金financially supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB530007,22KJA530001)National Natural Science Foundation of China(22208151)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220002)the State Key Laboratory of MaterialsOriented Chemical Engineering(SKL-MCE-22B07).
文摘For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.
文摘Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is made on the dry leaves of sugarcane(Saccharum officinarum)as an alternative raw material so as to be economical and environmentally benign.The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs.They were evaluated by UV–Vis.,FTIR,XRD,Raman spectroscopy,TGA/DTG,BET,FESEM-EDS and TEM.The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface.The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands.Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups.Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups.
基金The authors wish to acknowledge Engineering and Physical Sciences Research Council(EPSRC)UK for the Global Challenges Research Fund(No.EP/R015139/1)Rosetrees Trust UK&Stoneygate Trust UK for the Enterprise Fellowship(Ref:M874).
文摘Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
文摘Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.
基金Funded by the National Key Research and Development(R&D) Program of China(No.2018YFB1105702)。
文摘A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment.
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.
基金financially supported by the Scientific and Technological Plan Project of Guizhou Province (Grant No. [2021]060)the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and the Graduate Joint Training Base at Guizhou University (Grant No. 2020-520000-83-01-324061)the Guizhou Engineering Research Center for smart services (Grant No. 2203-520102-04-04-298868)。
文摘Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower specific capacity in aqueous electrolytes compared to organic systems and operates through a different reaction mechanism.The application of highly conductive graphene may effectively enhance the capacity of APIBs but could complicate the potassium storage environment.In this study,a MnO_(2) cathode pre-intercalated with K~+ions and grown on graphene(KMO@rGO) was developed using the microwave hydrothermal method for APIBs.KMO@rGO achieved a specific capacity of 90 mA h g^(-1) at a current density of 0.1 A g^(-1),maintaining a capacity retention rate of>90% after 5000 cycles at 5 A g^(-1).In-situ and exsitu characterization techniques revealed the energy-storage mechanism of KMO@rGO:layered MnO_(2)traps a large amount of "dead" water molecules during K~+ions removal.However,the introduction of graphene enables these water molecules to escape during K~+ ions insertion at the cathode.The galvanostatic intermittent titration technique and density functional theory confirmed that KMO@rGO has a higher K~+ions migration rate than MnO_(2).Therefore,the capacity of this cathode depends on the interaction between dead water and K~+ions during the energy-storage reaction.The optimal structural alignment between layered MnO_(2) and graphene allows electrons to easily flow into the external circuit.Rapid charge compensation forces numerous low-solvent K~+ions to displace interlayer dead water,enhancing the capacity.This unique reaction mechanism is unprecedented in other aqueous battery studies.
基金This work were supported by Natural Science Foundation of Zhejiang Province(LQ23E080003)a Doctoral program of Zhejiang University of science and technology(F701104L08)The Special Fund Project of Zhejiang University of Science and Technology's Basic Scientific Research Business Expenses in 2023(2023QN016).
文摘Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials.
基金Supported by Shanghai Aerospace Science and Technology Innovation Fund Project (SAST 2022-097)。
文摘Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2].However,the change in the oxidation degree of GO has a great effect on its chemical properties,the interaction between GO and the matrix,and the dispersion uniformity in the rubber matrix,which has a great effect on the reinforcement of rubber[3].
基金Funded by the Open/Innovation Fund of Hubei Three Gorges Laboratory(No.SK212002)。
文摘A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.
基金the financial support from the National Natural Science Foundation of China(No.51801078).
文摘To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.
基金financially funded by the Natural Science Foundation of Ningbo(No.2022J139)the Ningbo Yongjiang Talent Introduction Programme(No.2022A-227-G)+5 种基金the National Natural Science Foundation of China(No.51972178)the financial support from Scientific and Technological Bases and Talents of Guangxi(Guike AD21075051)the National Natural Science Foundation of China(12174075)the special fund for“Guangxi Bagui Scholars”support by ERC-CZ program(project LL2101)from the Ministry of Education Youth and Sports(MEYS)by the project Advanced Functional Nanorobots(reg.No.CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR)
文摘Anion exchange membrane fuel cell(AEMFC)technology is attracting intensive attention,due to its great potential by using non-precious-metal catalysts(NPMCs)in the cathode and cheap bipolar plate materials in alkaline media.However,in such case,the kinetics of hydrogen oxidation reaction(HOR)in the anode is two orders of magnitude sluggish than that of acidic electrolytes,which is recognized as the grand challenge in this field.Herein,we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers(Ni@NG)using a facile pyrolysis strategy.Based on the density functional theory calculations and electrochemical performance analysis,it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates,thus enabling the fundamentally enhanced activity for HOR with robust stability.As a proof of concept,the resultant Ni@NG sample as the anode with a low loading(1.8 mg cm^(-2))in AEMFCs delivers a high peak power density of 500 mW cm^(-2),outperforming all of those of NPMC-based analogs ever reported.
基金supported by the National Natural Science Foundation of China, No. 31671248the Natural Science Foundation of Beijing, No. 7222198 (both to NH)
文摘We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.However,the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting.Extracellular vesicles derived from bone marrow mesenchymal stem cells(BMSCs)can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site.In this study,12 weeks after surgery,sciatic nerve function was measured by electrophysiology and sciatic nerve function index,and myelin sheath and axon regeneration were observed by electron microscopy,immunohistochemistry,and immunofluorescence.The regeneration of microvessel was observed by immunofluorescence.Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function.These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery,and provide a new direction for the curation of peripheral nerve defect in the clinic.