期刊文献+
共找到25,465篇文章
< 1 2 250 >
每页显示 20 50 100
Efficacy of graphene nanocomposites for air disinfection in dental clinics: A randomized controlled study
1
作者 Ya-Qiong Ju Xiang-Hua Yu +3 位作者 Jing Wu Ying-Hui Hu Xiang-Yong Han Dan Fang 《World Journal of Clinical Cases》 SCIE 2024年第28期6173-6179,共7页
BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in ... BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in dental clinics by leveraging its adsorption and antibacterial properties.METHODS Patients who received ultrasonic cleaning at our hospital from April 2023 to April 2024.They were randomly assigned to three groups(n=20 each):Graphene nanocomposite material suction group(Group A),ordinary filter suction group(Group B),and no air suction device group(Group C).The air quality and air colony count in the clinic rooms were assessed before,during,and after the procedure.Additionally,bacterial colony counts were obtained from the air outlets of the suction devices and the filter screens in Groups A and B.RESULTS Before ultrasonic cleaning,no significant differences in air quality PM2.5 and colony counts were observed among the three groups.However,significant differences in air quality PM2.5 and colony counts were noted among the three groups during ultrasonic cleaning and after ultrasonic treatment.Additionally,the number of colonies on the exhaust port of the suction device and the surface of the filter were significantly lower in Group A than in Group B(P=0.000 and P=0.000,respectively).CONCLUSION Graphene nanocomposites can effectively sterilize the air in dental clinics by exerting their antimicrobial effects and may be used to reduce secondary pollution. 展开更多
关键词 graphene nanocomposites Oral clinic Air disinfection Secondary contamination
下载PDF
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
2
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
下载PDF
The roles of polymer-graphene interface and contact resistance among nanosheets in the effective conductivity of nanocomposites 被引量:1
3
作者 Y.ZARE K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1941-1956,共16页
The effective conductivity of graphene-based nanocomposites is suggested by the characteristics of polymer-filler interfacial areas as well as the contact resistance between the neighboring nanosheets.The interfacial ... The effective conductivity of graphene-based nanocomposites is suggested by the characteristics of polymer-filler interfacial areas as well as the contact resistance between the neighboring nanosheets.The interfacial properties are expressed by the effective levels of the inverse aspect ratio and the filler volume fraction.Moreover,the resistances of components in the contact regions are used to define the contact resistance,which inversely affects the effective conductivity.The obtained model is utilized to predict the effective conductivity for some examples.The discrepancy of the effective conductivity at various ranks of all factors is clarified.The interfacial conductivity directly controls the effective conductivity,while the filler conductivity plays a dissimilar role in the effective conductivity,due to the incomplete interfacial adhesion.A high operative conductivity is also achieved by small contact distances and high interfacial properties.Additionally,big contact diameters and little tunnel resistivity decrease the contact resistance,thus enhancing the effective conductivity. 展开更多
关键词 polymer nanocomposite operative conductivity graphene interfacial property contact region
下载PDF
Construction of TiO_(2)-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation 被引量:8
4
作者 Xiong-feng Zeng Jian-sheng Wang +2 位作者 Ying-na Zhao Wen-li Zhang Meng-huan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期503-510,共8页
We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(... We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(2) by hydrothermal method.TiO_(2) nanoparticles were distributed uniformly on the graphene interlayer.The special structure combined the advantages of graphene and TiO_(2) nanoparticles.As a result,T-MLGs with 64.3wt%TiO_(2) showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin.The photodegradation rate of T-MLGs with 64.3wt%TiO_(2) was 78%under light-emitting diode light irradiation for 150 min.Meanwhile,the pseudofirst-order rate constant of T-MLGs with 64.3wt%TiO_(2) was 3.89 times than that of pristine TiO_(2).The composites also exhibited high stability and reusability after five consecutive photocatalytic tests.This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO_(2) nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control. 展开更多
关键词 pillared structure titanium dioxide-pillared multilayer graphene nanocomposites photocatalysis CIPROFLOXACIN
下载PDF
A Controllable Synthetic Route for Preparing Graphene-Cu and Graphene-Cu_2O Nanocomposites Using Graphene Oxide-CuO as a Precursor 被引量:1
5
作者 陈丽 朱俊武 +3 位作者 BI Huiping MENG Xiaoqian YAO Pengcheng HAN Qiaofeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期947-950,共4页
The development of convenient method to obtain graphene-based nanocomposites is a key issue for their application. Herein, we described a facile route for synthesizing graphene-Cu and graphene-Cu2 O nanocomposites usi... The development of convenient method to obtain graphene-based nanocomposites is a key issue for their application. Herein, we described a facile route for synthesizing graphene-Cu and graphene-Cu2 O nanocomposites using graphene oxide-Cu O as a precursor. Remarkably, the different nanocomposites could be formed just by varying the reaction temperature and time. This work provides a feasible route for the preparation of graphene-based nanocomposites with various constituents. 展开更多
关键词 graphene-based nanocomposites various constituents PRECURSOR
下载PDF
A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets 被引量:2
6
作者 Xiao Su Ruoyu Wang +4 位作者 Xiaofeng Li Sherif Araby Hsu-Chiang Kuan Mohannad Naeem Jun Ma 《Nano Materials Science》 EI CAS CSCD 2022年第3期185-204,共20页
Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomp... Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided. 展开更多
关键词 graphene(nano)platelets(GNPs) Multi-walled carbon nanotubes(MWCNTs) Polymer nanocomposites Synergistic effect
下载PDF
Fabrication and electrochemical performance of graphene-ZnO nanocomposites
7
作者 李振鹏 门传玲 +1 位作者 王婉 曹军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期499-504,共6页
Graphene-ZnO nanocomposites were synthesized successfully through a one-step solvothermal approach. The mor-phology, structure, and composition of the prepared nanocomposites were investigated by scanning electron mic... Graphene-ZnO nanocomposites were synthesized successfully through a one-step solvothermal approach. The mor-phology, structure, and composition of the prepared nanocomposites were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), laser micro Raman spectroscopy, and Fourier transform infra-red spec-troscopy (FT-IR). The outcomes confirmed that this approach is comparatively steady, practicable, and operable compared with other reported methods. The electrochemical performance of the graphene-ZnO electrodes was analyzed through cyclic voltammetry, altering-current (AC) impedance, and chronopotentiometry tests. The graphene-ZnO electrodes exhib-ited an improved electrode performance with higher specific capacitance (115 F·g^-1 ), higher electrochemical stability, and higher energy density than the graphene electrodes and most reported graphene-ZnO electrodes. Graphene-ZnO nanocom-posites have a steady reversible charge/discharge behavior, which makes them promising candidates for electrochemical capacitors (ECs). 展开更多
关键词 graphene-ZnO nanocomposites electrochemical performance electrochemical capacitors
下载PDF
Design of Fe(3–x)O4 raspberry decorated graphene nanocomposites with high performances in lithium-ion battery
8
作者 Olivier Gerber Sylvie Bégin-Colin +7 位作者 Benoit P.Pichon Elodie Barraud Sébastien Lemonnier Cuong Pham-Huu Barbara Daffos Patrice Simon Jeremy Come Dominique Bégin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期270-275,共6页
Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspbe... Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspberry shaped nanostructures consist of original oriented aggregates of Fe(3–x)O4 magnetite nanocrystals, ensuring a low oxidation state of magnetite and a hollow and porous structure, which has been easily combined with graphene sheets. The resulting nanocomposite powder displays a very homogeneous spatial distribution of Fe(3–x)O4 nanostructures at the surface of the graphene sheets. These original nanostructures and their strong interaction with the graphene sheets resulted in very small capacity fading upon Li+ion intercalation. Reversible capacity, as high as 660 m Ah/g, makes this material promising for anode in Li-ion batteries application. 展开更多
关键词 graphene Fe3–xO4 raspberry shaped nanostructures Fe3–xO4/graphene nanocomposites Lithium-ion battery Reversible capacity
下载PDF
Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites 被引量:38
9
作者 Andrew T. Smith Anna Marie LaChance +2 位作者 Songshan Zeng Bin Liu Luyi Sun 《Nano Materials Science》 CAS 2019年第1期31-47,共17页
Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphe... Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites. 展开更多
关键词 graphene OXIDE Reduced graphene OXIDE graphene quantum DOTS polymer nanocomposites SYNTHESIS PROPERTIES of graphene and graphene OXIDE Applications
下载PDF
Magnetic Fe_3O_4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing 被引量:4
10
作者 Lili Yu Hui Wu +4 位作者 Beina Wu Ziyi Wang Hongmei Cao Congying Fu Nengqin Jia 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期258-267,共10页
An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the mag... An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application. 展开更多
关键词 Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanocomposites Magnetically controllable assembling Direct electron transfer BIOSENSOR
下载PDF
Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites 被引量:11
11
作者 Dilini Galpaya Mingchao Wang +3 位作者 Meinan Liu Nunzio Motta Eric Waclawik Cheng Yan 《Graphene》 2012年第2期30-49,共20页
Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nano... Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with im- proved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer na-nocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, elec-trodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed. 展开更多
关键词 graphene POLYMER nanocomposites Fabrications and PROPERTIES
下载PDF
Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks 被引量:1
12
作者 Jit Sarkar D.K.Das 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第10期1322-1328,共7页
Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were r... Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks. 展开更多
关键词 graphene burnt red soil BRICK FLY ash BRICK nanocomposites compressive STRENGTH
下载PDF
CoFe_2O_4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries 被引量:5
13
作者 Yinglin Xiao Xiaomin Li +5 位作者 Jiantao Zai Kaixue Wang Yong Gong Bo Li Qianyan Han Xuefeng Qian 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期307-315,共9页
Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites ob... Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes. 展开更多
关键词 Cobalt ferrite graphene Anode materials Lithium ion battery
下载PDF
Nano-tribological behavior of graphene nanoplatelet-reinforced magnesium matrix nanocomposites 被引量:2
14
作者 Mohammad Shahin Khurram Munir +1 位作者 Cuie Wen Yuncang Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期895-909,共15页
The corrosion resistance and wear resistance of metallic biomaterials are critically important for orthopedic hard-tissue replacement applications because the lack of such properties not only adversely affects their m... The corrosion resistance and wear resistance of metallic biomaterials are critically important for orthopedic hard-tissue replacement applications because the lack of such properties not only adversely affects their mechanical integrity but also allows the release of wear debris into the human body.In this study,the potential of zirconium(Zr)as an alloying element and graphene nanoplatelets(GNPs)as a nano-reinforcement material were investigated in relation to improving the tribological performance of pure magnesium(Mg).The GNPs-reinforced Mg matrix nanocomposites(MNCs)were fabricated using powder metallurgy.Results indicate that additions of 0.5 wt.%Zr and0.1 wt.%GNPs to Mg matrices significantly improved the wear resistance by 89%and 92%at 200μN load,60%and 80%at 100μN load,and 94%and 93%at 50μN load,respectively,as compared to the wear resistance of pure Mg.The wear depth and coefficient of friction of the MNC containing 0.5 wt.%Zr and 0.1 wt.%GNPs(Mg0.5 Zr0.1 GNPs MNC)were considerably reduced as compared to pure Mg and Mg0.5 Zr.Our results demonstrate that the Mg0.5 Zr0.1 GNPs MNC is promising for orthopedic applications in relation to its excellent tribological performance. 展开更多
关键词 Coefficient of friction graphene nanoplatelet Magnesium matrix nanocomposite WEAR
下载PDF
Atomic insights into synergistic effect of pillared graphene by carbon nanotube on the mechanical properties of polymer nanocomposites 被引量:2
15
作者 Zhipeng Zhou Hang Zhang +2 位作者 Jiali Qiu Pengwan Chen Weifu Sun 《Nano Materials Science》 EI CAS CSCD 2022年第3期235-243,共9页
Molecular dynamics simulations have been performed to explore the underlying synergistic mechanism of pillared graphene or non-covalent connected graphene and carbon nanotubes(CNTs) on the mechanical properties of pol... Molecular dynamics simulations have been performed to explore the underlying synergistic mechanism of pillared graphene or non-covalent connected graphene and carbon nanotubes(CNTs) on the mechanical properties of polyethylene(PE) nanocomposites. By constructing the pillared graphene model and CNTs/graphene model, the effect of the structure, arrangement and dispersion of hybrid fillers on the tensile mechanical properties of PE nanocomposites was studied. The results show that the pillared graphene/PE nanocomposites exhibit higher Young’s modulus, tensile strength and elongation at break than non-covalent connected CNTs/graphene/PE nanocomposites. The pull-out simulations show that pillared graphene by CNTs has both large interfacial load and long displacement due to the mixed modes of shear separation and normal separation. Additionally, pillared graphene can not only inhibit agglomeration but also form a compact effective thickness(stiff layer), consistent with the adsorption behavior and improved interfacial energy between pillared graphene and PE matrix. 展开更多
关键词 Molecular dynamics Carbon nanotube Pillared graphene Synergistic effect Polymer nanocomposite
下载PDF
Dielectric and Microwave Properties of Natural Rubber Based Nanocomposites Containing Graphene 被引量:2
16
作者 Omar A. Al-Hartomy Ahmed Al-Ghamdi +4 位作者 Nikolay Dishovsky Rossitsa Shtarkova Vladimir Iliev Ibrahim Mutlay Farid El-Tantawy 《Materials Sciences and Applications》 2012年第7期453-459,共7页
The development of carbon nanotubes based materials has been impeded by both their difficult dispersion in the polymer matrix and their high cost. The discovery of graphene and the subsequent development of graphene-b... The development of carbon nanotubes based materials has been impeded by both their difficult dispersion in the polymer matrix and their high cost. The discovery of graphene and the subsequent development of graphene-based polymer nanocomposites is an important addition in the area of nanoscience and technology. In this study the influence of graphene nanoparticles (GNP) in concentrations from 2.0 to 10.0 phr on the dielectric (dielectric permittivity, dielectric loss angle tangent) and microwave (reflection coefficient, attenuation coefficient, shielding effectiveness) properties of nanocomposites on the basis of natural rubber has been investigated in the wide frequency range (1 - 12 GHz). The results achieved allow recommending graphene as a filler for natural rubber based composites to afford specific dielectric and microwave properties, especially when their loading with the much more expensive carbon nanotubes is not possible. 展开更多
关键词 nanocomposites NATURAL RUBBER graphene DIELECTRIC and MICROWAVE Properties
下载PDF
Advances in graphene reinforced metal matrix nanocomposites:Mechanisms,processing,modelling,properties and applications 被引量:7
17
作者 Wenge Chen Tao Yang +7 位作者 Longlong Dong Ahmed Elmasry Jiulong Song Nan Deng Ahmed Elmarakbi Terence Liu Hai Bao Lv Yong Qing Fu 《Nanotechnology and Precision Engineering》 CAS CSCD 2020年第4期189-210,共22页
Graphene has been extensively explored to enhance functional and mechanical properties of metalmatrix nanocomposites for wide-range applications due to their superior mechanical,electrical and thermal properties.This ... Graphene has been extensively explored to enhance functional and mechanical properties of metalmatrix nanocomposites for wide-range applications due to their superior mechanical,electrical and thermal properties.This article discusses recent advances of key mechanisms,synthesis,manufacture,modelling and applications of graphene metal matrix nanocomposites.The main strengthening mechanisms include load transfer,Orowan cycle,thermal mismatch,and refinement strengthening.Synthesis technologies are discussed including some conventional methods(such as liquid metallurgy,powdermetallurgy,thermal spraying and deposition technology)and some advanced processing methods(such as molecular-level mixing and friction stir processing).Analytical modelling(including phenomenological models,semi-empirical models,homogenization models,and self-consistent model)and numerical simulations(including finite elements method,finite difference method,and boundary element method)have been discussed for understanding the interface bonding and performance characteristics between graphene and different metal matrices(Al,Cu,Mg,Ni).Key challenges in applying graphene as a reinforcing component for the metal matrix composites and the potential solutions as well as prospectives of future development and opportunities are highlighted. 展开更多
关键词 graphene Metal matrix composites Strengthening mechanism Synthesis method MODELLING
下载PDF
Electrostatic self-assembly of CdS nanowires-nitrogen doped graphene nanocomposites for enhanced visible light photocatalysis 被引量:1
18
作者 Bin Han Siqi Liu +1 位作者 Zi-Rong Tang Yi-Jun Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期145-156,共12页
CdS nanowires-nitrogen doped graphene (CdS NWs-NGR) nanocomposites have been fabricated by an electrostatic self-assembly strategy followed by a hydrothermal reduction. The CdS NWs-NGR exhibits higher photoactivity ... CdS nanowires-nitrogen doped graphene (CdS NWs-NGR) nanocomposites have been fabricated by an electrostatic self-assembly strategy followed by a hydrothermal reduction. The CdS NWs-NGR exhibits higher photoactivity for selective reduction of aromatic nitro organics in water under visible light irradiation than blank CdS nanowires (CdS NWs) and CdS nanowires-reduced graphene oxide (CdS NWs-RGO) nanocomposites. The enhanced photoactivity of CdS NWs-NGR can be attributed to the improved electronic conductivity due to the introduc- tion of nitrogen atoms, which thus enhances the separation and transfer of charge carriers photogenerated from CdS NWs. Our work could provide a facile method to synthesize NGR based one-dimensional (1D) semiconductor composites for selective organic transformations, and broaden the potential applications for NGR as a cocatalyst. 展开更多
关键词 nitrogen doping graphene CdS nanowire photocatalytic organic synthesis visible light
下载PDF
Spider Web‑Inspired Graphene Skeleton‑Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management 被引量:13
19
作者 Ying Lin Qi Kang +4 位作者 Han Wei Hua Bao Pingkai Jiang Yiu‑Wing Mai Xingyi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期308-321,共14页
Phase change materials(PCMs)can be used for efficient thermal energy harvesting,which has great potential for cost-effective thermal management and energy storage.However,the low intrinsic thermal conductivity of poly... Phase change materials(PCMs)can be used for efficient thermal energy harvesting,which has great potential for cost-effective thermal management and energy storage.However,the low intrinsic thermal conductivity of polymeric PCMs is a bottleneck for fast and efficient heat harvesting.Simultaneously,it is also a challenge to achieve a high thermal conductivity for phase change nanocomposites at low filler loading.Although constructing a three-dimensional(3D)thermally conductive network within PCMs can address these problems,the anisotropy of the 3D framework usually leads to poor thermal conductivity in the direction perpendicular to the alignment of fillers.Inspired by the interlaced structure of spider webs in nature,this study reports a new strategy for fabricating highly thermally conductive phase change composites(sw-GS/PW)with a 3D spider web(sw)-like structured graphene skeleton(GS)by hydrothermal reaction,radial freeze-casting and vacuum impregnation in paraffin wax(PW).The results show that the sw-GS hardly affected the phase transformation behavior of PW at low loading.Especially,sw-GS/PW exhibits both high cross-plane and in-plane thermal conductivity enhancements of~1260%and~840%,respectively,at an ultra-low filler loading of 2.25 vol.%.The thermal infrared results also demonstrate that sw-GS/PW possessed promising applications in battery thermal management. 展开更多
关键词 Thermal conductivity Radial freeze-casting Phase change materials 3D graphene aerogel Thermal management
下载PDF
Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion 被引量:3
20
作者 Yong Mei Pu-zhen Shao +8 位作者 Ming Sun Guo-qin Chen Murid Hussain Feng-lei Huang Qiang Zhang Xiao-sa Gao Yin-yin Pei Su-juan Zhong Gao-hui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期888-899,共12页
Graphene/aluminum(Gr/Al)composites have attracted the attention of researchers all over the world due to their excellent properties.However,graphene agglomerates easily because of the van der Waals force between graph... Graphene/aluminum(Gr/Al)composites have attracted the attention of researchers all over the world due to their excellent properties.However,graphene agglomerates easily because of the van der Waals force between graphite sheets,thereby affecting the performance of the composites.Decreasing the agglomeration of graphene and dispersing it uniformly in the Al matrix is a key challenge.In the preparation process,predispersion treatment and deformation treatment can play important roles in graphene dispersion.Researchers have conducted a series of research and literature reviews of the graphene predispersion and consolidation of composites.However,they paid less attention to post-deformation processing.This review summarizes different deformation treatments involved in the preparation process of Gr/Al composites and the evolution of the microstructure during the process.Research on deformation parameters is expected to further improve the properties of Gr/Al composites and would provide a deep understanding of the strengthening effect of graphene. 展开更多
关键词 graphene/aluminum composites deformation treatment DISPERSION MICROSTRUCTURE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部