The paper presents a set of techniques of digital watermarking by which copyright and user rights messages are hidden into geo-spatial graphics data,as well as techniques of compressing and encrypting the watermarked ...The paper presents a set of techniques of digital watermarking by which copyright and user rights messages are hidden into geo-spatial graphics data,as well as techniques of compressing and encrypting the watermarked geo-spatial graphics data.The technology aims at tracing and resisting the illegal distribution and duplication of the geo-spatial graphics data product,so as to effectively protect the data producer's rights as well as to facilitate the secure sharing of geo-spatial graphics data.So far in the CIS field throughout the world,few researches have been made on digital watermarking.The research is a novel exploration both in the field of security management of geo-spatial graphics data and in the applications of digital watermarking technique.An application software employing the proposed technology has been developed.A number of experimental tests on the 1:500,000 digital bathymetric chart of the South China Sea and 1:10,000 digital topographic map of Jiangsu Province have been conducted to verify the feasibility of the proposed technology.展开更多
3D desktop-based virtual environments provide a means for displaying quantitative data in context.Data that are inherently spatial in three dimensions may benefit from visual exploration and analysis in relation to th...3D desktop-based virtual environments provide a means for displaying quantitative data in context.Data that are inherently spatial in three dimensions may benefit from visual exploration and analysis in relation to the environment in which they were collected and to which they relate.We empirically evaluate how effectively and efficiently such data can be visually analyzed in relation to location and landform in 3D versus 2D visualizations.In two experiments,participants performed visual analysis tasks in 2D and 3D visualizations and reported insights and their confidence in them.The results showed only small differences between the 2D and 3D visualizations in the performance measures that we evaluated:task completion time,confidence,complexity,and insight plausibility.However,we found differences for different datasets and settings suggesting that 3D visualizations or 2D representations,respectively,may be more or less useful for particular datasets and contexts.展开更多
In this paper we present a novel GPU-oriented method of creating an inherently continuous triangular mesh for tile-based rendering of regular height fields. The method is based on tiling data-independent semi-regular ...In this paper we present a novel GPU-oriented method of creating an inherently continuous triangular mesh for tile-based rendering of regular height fields. The method is based on tiling data-independent semi-regular meshes of non-uniform structure, a technique that is quite different from other mesh tiling approaches. A complete, memory efficient set of mesh patterns is created by an off-line procedure and stored into the graphics adapter's memory at runtime. At rendering time, for each tile, one of the precomputed mesh patterns is selected for rendering. The selected mesh pattern fits the required level of details of the tile and ensures seamless connection with other adjacent mesh patterns, like in a game of dominoes. The scalability potential of the proposed method is demonstrated through quadtree hierarchical grouping of tiles. The efficiency is verified by experimental results on height fields for terrain representation, where the method achieves high frame rates and sustained triangle throughput on high resolution viewports with sub-pixel error tolerance. Frame rate sensitivity to real-time modifications of the height field is measured, and it is shown that the method is very tolerant and consequently well tailored for applications dealing with rapidly changeable phenomena represented by height fields.展开更多
基金Under the auspices of Jiangsu Provincial Science and Technology Fundation of Surveying and Mapping (No. 200416 )
文摘The paper presents a set of techniques of digital watermarking by which copyright and user rights messages are hidden into geo-spatial graphics data,as well as techniques of compressing and encrypting the watermarked geo-spatial graphics data.The technology aims at tracing and resisting the illegal distribution and duplication of the geo-spatial graphics data product,so as to effectively protect the data producer's rights as well as to facilitate the secure sharing of geo-spatial graphics data.So far in the CIS field throughout the world,few researches have been made on digital watermarking.The research is a novel exploration both in the field of security management of geo-spatial graphics data and in the applications of digital watermarking technique.An application software employing the proposed technology has been developed.A number of experimental tests on the 1:500,000 digital bathymetric chart of the South China Sea and 1:10,000 digital topographic map of Jiangsu Province have been conducted to verify the feasibility of the proposed technology.
文摘3D desktop-based virtual environments provide a means for displaying quantitative data in context.Data that are inherently spatial in three dimensions may benefit from visual exploration and analysis in relation to the environment in which they were collected and to which they relate.We empirically evaluate how effectively and efficiently such data can be visually analyzed in relation to location and landform in 3D versus 2D visualizations.In two experiments,participants performed visual analysis tasks in 2D and 3D visualizations and reported insights and their confidence in them.The results showed only small differences between the 2D and 3D visualizations in the performance measures that we evaluated:task completion time,confidence,complexity,and insight plausibility.However,we found differences for different datasets and settings suggesting that 3D visualizations or 2D representations,respectively,may be more or less useful for particular datasets and contexts.
基金supported by the projects TR32039 and TR32047 of the Ministry of Science and Technological Development of Serbia
文摘In this paper we present a novel GPU-oriented method of creating an inherently continuous triangular mesh for tile-based rendering of regular height fields. The method is based on tiling data-independent semi-regular meshes of non-uniform structure, a technique that is quite different from other mesh tiling approaches. A complete, memory efficient set of mesh patterns is created by an off-line procedure and stored into the graphics adapter's memory at runtime. At rendering time, for each tile, one of the precomputed mesh patterns is selected for rendering. The selected mesh pattern fits the required level of details of the tile and ensures seamless connection with other adjacent mesh patterns, like in a game of dominoes. The scalability potential of the proposed method is demonstrated through quadtree hierarchical grouping of tiles. The efficiency is verified by experimental results on height fields for terrain representation, where the method achieves high frame rates and sustained triangle throughput on high resolution viewports with sub-pixel error tolerance. Frame rate sensitivity to real-time modifications of the height field is measured, and it is shown that the method is very tolerant and consequently well tailored for applications dealing with rapidly changeable phenomena represented by height fields.