Graphite dust has an important effect on the safety of high-temperature gas-cooled reactors(HTR).The flow field in the steam generator was studied by the computational fluid dynamics(CFD) method,with the results i...Graphite dust has an important effect on the safety of high-temperature gas-cooled reactors(HTR).The flow field in the steam generator was studied by the computational fluid dynamics(CFD) method,with the results indicating that the friction velocity in the windward and the leeward of the heat transfer tubes is relatively low and is higher at the sides.Further analysis of the resuspension of graphite dust indicates that the resuspension fraction reaches nearly zero for particles with a diameter less than 1 μm,whereas it will increases as the helium velocity in the steam generator increases for particle size larger than 1 μm.Moreover,the resuspension fraction increases as the particle size increases.The results also indicate that resuspension of the particles with sizes larger than 1 μm exhibited obvious differences in different parts of the steam generator.展开更多
In high-temperature gas-cooled reactors,graphite dust particles within the reactor core and the heat transfer equipment experience large temperature gradients.Under such conditions,thermophoresis may play an important...In high-temperature gas-cooled reactors,graphite dust particles within the reactor core and the heat transfer equipment experience large temperature gradients.Under such conditions,thermophoresis may play an important role in determining aerosol evolution.This study presents a theoretical and numerical analysis of the thermophoretic effects on aerosol coagulation within these reactors.The coagulation rates for Brownian versus thermophoretic coagulation are calculated and compared for various temperature gradients.Our results show that thermophoretic coagulation dominates over Brownian coagulation for large temperature gradients.We defined an enhancement factor to evaluate the role of thermophoretic coagulation under various reactor conditions.The enhancement factor increased dramatically with increasing temperature gradient,decreasing pressure and increasing particle diameter,but was not very sensitive to temperature change.The time evolution of the particle size distribution related to combined Brownian and thermophoretic coagulation was simulated using a log-skew-normal method of moments.The simulation results indicate that aerosol evolution can be strongly accelerated by thermophoretic coagulation under large temperature gradients.展开更多
基金supported by the Tsinghua University Initiative Scientific Research Program(Nos.20131089216 and 20111080959)the National S&T Major Project(Grant No.2008ZX06901-001)
文摘Graphite dust has an important effect on the safety of high-temperature gas-cooled reactors(HTR).The flow field in the steam generator was studied by the computational fluid dynamics(CFD) method,with the results indicating that the friction velocity in the windward and the leeward of the heat transfer tubes is relatively low and is higher at the sides.Further analysis of the resuspension of graphite dust indicates that the resuspension fraction reaches nearly zero for particles with a diameter less than 1 μm,whereas it will increases as the helium velocity in the steam generator increases for particle size larger than 1 μm.Moreover,the resuspension fraction increases as the particle size increases.The results also indicate that resuspension of the particles with sizes larger than 1 μm exhibited obvious differences in different parts of the steam generator.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51676112)the National Key Research&Development Program of China(Grant No.2016YFC0202700)+1 种基金the National Science&Technology Major Project(Grant No.ZX069)Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education.We also thank Prof.David Christopher for editing the English.
文摘In high-temperature gas-cooled reactors,graphite dust particles within the reactor core and the heat transfer equipment experience large temperature gradients.Under such conditions,thermophoresis may play an important role in determining aerosol evolution.This study presents a theoretical and numerical analysis of the thermophoretic effects on aerosol coagulation within these reactors.The coagulation rates for Brownian versus thermophoretic coagulation are calculated and compared for various temperature gradients.Our results show that thermophoretic coagulation dominates over Brownian coagulation for large temperature gradients.We defined an enhancement factor to evaluate the role of thermophoretic coagulation under various reactor conditions.The enhancement factor increased dramatically with increasing temperature gradient,decreasing pressure and increasing particle diameter,but was not very sensitive to temperature change.The time evolution of the particle size distribution related to combined Brownian and thermophoretic coagulation was simulated using a log-skew-normal method of moments.The simulation results indicate that aerosol evolution can be strongly accelerated by thermophoretic coagulation under large temperature gradients.