The potassium terbium polyphosphate crystal KTb(PO3)4 has been synthesized using a high temperature solution reaction method. The structure and composition were characterized by single-crystal X-ray diffraction, pow...The potassium terbium polyphosphate crystal KTb(PO3)4 has been synthesized using a high temperature solution reaction method. The structure and composition were characterized by single-crystal X-ray diffraction, powder X-ray diffraction and elemental analysis. The compound crystallizes in the monoclinic space group P21/n with a=10.3182(6), b=8.9129(5), c=10.7940(6) , β=105.993(1)o, V=954.3 3, Z=4, Mr=513.91, Dc=3.577 g/cm3, μ=8.585 mm(-1), F(000)=960, S=0.955,(Δρ)max=1.380,(Δρ)min=–3.428 e/3, the final R=0.0301 and w R=0.0400 for 2301 observed reflections with I 〉 2σ(I). In addition, pure powder of isostructural Rb Tb(PO3)4 was synthesized in order to investigate the optical property. Photoluminescence measurements show that both crystals ATb(PO3)4(A=K(1), Rb(2)) are promising candidates to become solid-state visible green light-emitting sources.展开更多
基金Supported by the National Natural Science Foundation of China(No.20901066)the Natural Science Foundation of Yunnan Province(No.2012FB122)+3 种基金the Education Science Foundation of Yunnan Province(No.2013Z050)the Science Foundation of State Key Laboratory of Structural Chemistry(No.20140012)Training Program for Young Academic and Technical Leader in Yunnan Provincethe Science Foundation of Key Laboratory of Micro-and Nano-materials and Technology in Yunnan Province(No.ZZ2016002)
文摘The potassium terbium polyphosphate crystal KTb(PO3)4 has been synthesized using a high temperature solution reaction method. The structure and composition were characterized by single-crystal X-ray diffraction, powder X-ray diffraction and elemental analysis. The compound crystallizes in the monoclinic space group P21/n with a=10.3182(6), b=8.9129(5), c=10.7940(6) , β=105.993(1)o, V=954.3 3, Z=4, Mr=513.91, Dc=3.577 g/cm3, μ=8.585 mm(-1), F(000)=960, S=0.955,(Δρ)max=1.380,(Δρ)min=–3.428 e/3, the final R=0.0301 and w R=0.0400 for 2301 observed reflections with I 〉 2σ(I). In addition, pure powder of isostructural Rb Tb(PO3)4 was synthesized in order to investigate the optical property. Photoluminescence measurements show that both crystals ATb(PO3)4(A=K(1), Rb(2)) are promising candidates to become solid-state visible green light-emitting sources.