Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th...Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC.展开更多
Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting ...Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting its practical applicability.Herein,we propose a rational strategy involving a Prussian blue analogue-derived graphitized carbon anode with fast and durable potassium storage capability,which is constructed by encapsulating cobalt nanoparticles in nitrogen-doped graphitized carbon(Co-NC).Both experimental and theoretical results show that N-doping effectively promotes the uniform dispersion of cobalt nanoparticles in the carbon matrix through Co-N bonds.Moreover,the cobalt nanoparticles and strong Co-N bonds synergistically form a threedimensional conductive network,increase the number of adsorption sites,and reduce the diffusion energy barrier,thereby facilitating the adsorption and the diffusion kinetics.These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh g^−1 after 100 and 300 cycles at 0.05 and 0.1 A g^−1,respectively,demonstrating the applicability of the Co-NC anode for KIBs.展开更多
Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as p...Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications.展开更多
Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP compo...Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP composite nanoarray using bimetallic metal-organic framework(MOF) as a self-sacrificial template.The resulting C@NiCoP exhibits superior performance for pH-universal electrocatalytic hydrogen evolution reaction(HER),particularly representing a low overpotential of 46.3 mV at 10 mA cm^(-2) and Tafel slope of 44.1 mV dec^(-1) in alkaline media.The structural characterizations combined with theoretical calculation demonstrate that tailored electronic structure from bimetal atoms and the synergistic effect with graphitized carbon layer could jointly optimize the adsorption ability of hydrogen on active sites in HER process,and enhance the electrical conductivity as well.In addition,the carbon layer served as a protecting shell also prevents highly dispersed NiCoP components from agglomeration and/or loss in harsh media,finally improving the durability.This work thus provides a new insight into optimizing activity and stability of pH-universal electrocatalysts by the nanostructural design and electronic structure modulation.展开更多
A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+eth...A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+ethylene carbonate/diethylene carbonate|graphite cells, using an in situ X Ray diffraction (XRD) technique.The study of Li C intercalation processes of the graphitized coke reveals that there are three major types of intercalation behavior.The first is uniformly intercalated at all Li C compounds in graphitized coke heated at 2 250℃;the second is obviously staging phenomenon during intercalation for the graphitized coke heated at 2 750℃; the third is cointercalation of solvated Li ion at high potential (>0.3V) and then lithium electrochemical intercalation at lower potential for that heated at 3 000℃, resulting in the decrease of capacity and efficiency of graphite negative electrode for lithium ion secondary battery.展开更多
Results of calculation of the power indicators of the ore restoration arc furnaces with the set power of 10.5 MVA workingon are given as on the self-baking also on the graphitized electrodes. It is established that de...Results of calculation of the power indicators of the ore restoration arc furnaces with the set power of 10.5 MVA workingon are given as on the self-baking also on the graphitized electrodes. It is established that despite high cost of the graphitizedelectrodes in comparison with the self-baking electrodes, power parameters much more improve. Besides, the natural power factorincreases, melting time decreases and that the most important the furnace turns out compact, convenient for service, building of thegraphitized electrodes is carried out for a small period, and also the number of service personnel is reduced. We propose a newdesign scheme of low-voltage circuit for the arc furnace according to the scheme "a triangle on the electrodes" designed in athree-bifilar version, in which more complete symmetry is gained by means of the crosspieces forming a triangle directly at theelectrode arms. In the proposed scheme, the current-carrying tubes that have different polarity are located on the same arm that leadsto further reduction in low-voltage circuit inductance. The application of this scheme allows for reducing reactive and activeresistances of low-voltage circuits by 2.5-3 times and 15-20%, respectively, as well as for shortening the heat, reducing specificenergy consumption and increasing the installation power factor.展开更多
Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electro...Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electrolyte.Despite the low-cost expanded graphite-triethylaminehydrochloride(EG-ET)system has been improved in cycle performance,its rate capability still remains a gap with the expensive graphene-alkylimidazoliumchloride AIB system.In this work,we treated the cheap EG appropriately through an industrial high-temperature process,employed the obtained EG3K(treated at 3000℃)cathode with AlCl_(3)-ET electrolyte,and built a novel,high-rate capability and double-cheap AIB system.The new EG3K-ET system achieved the cathode capacity of average 110 m Ah g^(-1)at 1 A g^(-1)with 18,000cycles,and retained the cathode capacity of 100 m Ah g^(-1)at 5 A g^(-1)with 27,500 cycles(fast charging of 72 s).Impressively,we demonstrated that a battery pack(EG3K-ET system,12 m Ah)had successfully driven the Model car running 100 m long.In addition,it was confirmed that the improvement of rate capability in the EG3K-ET system was mainly derived by deposition,and its capacity contribution ratio was about 53.7%.This work further promoted the application potential of the low-cost EG-ET AIB system.展开更多
The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially...The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.展开更多
Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent the...Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed.展开更多
A novel chromatography stationary phase with a quasi-graphitized carbon modified shell has been developed. Coal pitch was directly carbonized on the surface of porous silica with in-situ carbonization. The carbonized ...A novel chromatography stationary phase with a quasi-graphitized carbon modified shell has been developed. Coal pitch was directly carbonized on the surface of porous silica with in-situ carbonization. The carbonized coal pitch coating exhibits some degree of graphitization with a 78 nm-thick layer on the surface of silica and a 0.5 nm-thick layer on the inner surface of the mesopores. Based on the special structure of the graphitized carbon coating, the novel stationary phase can provide multiple interactions such as hydrophobic interaction, π-π interaction and dipole-dipole interaction. The novel composite material exhibited unique separation selectivity and excellent separation efficiency for polar compounds, including imidazoles, nucleosides and pesticides. Besides, the packed column also exhibited great repeatability with the RSDs of the retention time of nucleosides between 0.07%-0.50%(n = 5). Finally, satisfied result was achieved in the separation of fullerenes on the new column, suggesting the great potential in the industrial-scale purification of fullerenes.展开更多
Due to inefficient diagnostic methods,inflammatory bowel disease(IBD)normally progresses into severe complications including cancer.Highly efficient extraction and identification of metabolic fingerprints are of signi...Due to inefficient diagnostic methods,inflammatory bowel disease(IBD)normally progresses into severe complications including cancer.Highly efficient extraction and identification of metabolic fingerprints are of significance for disease surveillance.In this work,we synthesized a layered titania nanosheet doped with graphitized carbon(2D-GC-mTNS)through a simple one-step assembly process for assisting laser desorption ionization mass spectrometry(LDI-MS)for metabolite analysis.Based on the synergistic effect of graphitized carbon and mesoporous titania,2D-GC-mTNS exhibits good extraction ability including high sensitivity(<1 fmolμL−1)and great repeatability toward metabolites.A total of 996 fingerprint spectra were collected from hundreds of native urine samples(including IBD patients and healthy controls),each of which contained 1220 m/z metabolite features.Diagnostic model was further established for precise discrimination of patients from healthy controls,with high area under the curve value of 0.972 and 0.981 toward discovery cohort and validation cohort,respectively.The 2D-GC-mTNS promotes LDI-MS to be close to clinical application,with rapid speed,minimum sample consumption and free of sample pretreatment.展开更多
The structural characteristics of the graphitized carbon microcrystal prepared from carbonized polyimide (PI) film were explored using X-ray diffraction technique. The experimental results show that the graphitization...The structural characteristics of the graphitized carbon microcrystal prepared from carbonized polyimide (PI) film were explored using X-ray diffraction technique. The experimental results show that the graphitization of the thin film was initiated by heat treatment around 2 100°C; the carbon layers of the thin film specimens heat-treated at 2 825°C and above possessed good orientation, the phenomenon of poly-phase graphitization appeared markedly, and the information of the mosaic structure of the sample was obtained; the interlayer spacing and the mosaic degree for 3 160°C heat-treated thin film samples are 0.335 45 nm and 5.4°, respectively. As far as the source of two crystal phases with a slight difference in graphitization degree is concerned, some inferences are discussed, which helps understand more about the structure of the graphitization products.展开更多
Magnetically active, ordered and stable mesoporous carbons with partially graphitized networks and controllable surface wettability (PR-Fe-P123-800 and PR-Ni- P123-800) have been synthesized through direct carboniza...Magnetically active, ordered and stable mesoporous carbons with partially graphitized networks and controllable surface wettability (PR-Fe-P123-800 and PR-Ni- P123-800) have been synthesized through direct carbonization of Fe or Ni functionalized, and ordered mesoporous polymers at 800℃, which could be synthesized from self assembly of resol (phenol/formaldehyde) with block copolymer template (P123) in presence of Fe3+ or Ni2+, and hydrothermal treatment at 200℃. PR-Fe-P123-800 and PR-Ni- P123-800 possess ordered and uniform mesopores, large BET surface areas, good stabilities, controllable surface wettability and partially graphitized framework. The above structural characteristics result in their enhanced selective adsorption property and good reusability for organic pollutants such as RhB, p-nitrophenol and n-heptane in water, which could be easily regenerated through separation under constant magnetic fields and washing with ethanol solvent. The unique magnetically active and adsorptive property found in PR-Fe-P123-800 and PR-Ni-P123-800 will be very important for them to be used as efficient absorbents for removal of various organic pollutants in water.展开更多
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte...The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.展开更多
An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from ...An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs.展开更多
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti...Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.展开更多
Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challengi...Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challenging.Especially when the battery is operated under high temperature,the trace water present in the electrolyte will accelerate the hydrolysis of the electrolyte and the resulting HF will further erode the interphase.In order to enhance the long-term cycling performance of graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)LIBs,herein,Tolylene-2,4-diisocyanate(TDI)additive containing lone-pair electrons is employed to formulate a novel bifunctional electrolyte aimed at eliminating H_(2)O/HF generated at elevated temperature.After 1000 cycles at 25℃,the battery incorporating the TDI-containing electrolyte exhibits an impressive capacity retention of 94%at 1 C.In contrast,the battery utilizing the blank electrolyte has a lower capacity retention of only 78%.Furthermore,after undergoing 550 cycles at 1 C under45℃,the inclusion of TDI results in a notable enhancement of capacity,increasing it from 68%to 80%.This indicates TDI has a favorable influence on the cycling performance of LIBs,especially at elevated temperatures.The analysis of the film formation mechanism suggests that the lone pair of electrons of the isocyanate group in TDI play a crucial role in inhibiting the generation of H_(2)O and HF,which leads to the formation of a thin and dense interphase.The existence of this interphase is thought to substantially enhance the cycling performance of the LIBs.This work not only improves the performance of graphite/NCM811 batteries at room temperature and high temperature by eliminating H_(2)O/HF but also presents a novel strategy for advancing functional electrolyte development.展开更多
Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties...Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.展开更多
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc...The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.展开更多
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ...The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.展开更多
基金supported by the National Natural Science Foundation of China(No.52274346).
文摘Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC.
基金supported by National Natural Science Foundation of China(Grant No.51932011,51802356)Innovation-Driven Project of Central South University(No.2020CX024)+3 种基金the Research Support Fund of the Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology in Hunan Province(No.201809)the Program of Youth Talent Support for Hunan Province(2018RS3098)Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX2017B045)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts075).
文摘Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting its practical applicability.Herein,we propose a rational strategy involving a Prussian blue analogue-derived graphitized carbon anode with fast and durable potassium storage capability,which is constructed by encapsulating cobalt nanoparticles in nitrogen-doped graphitized carbon(Co-NC).Both experimental and theoretical results show that N-doping effectively promotes the uniform dispersion of cobalt nanoparticles in the carbon matrix through Co-N bonds.Moreover,the cobalt nanoparticles and strong Co-N bonds synergistically form a threedimensional conductive network,increase the number of adsorption sites,and reduce the diffusion energy barrier,thereby facilitating the adsorption and the diffusion kinetics.These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh g^−1 after 100 and 300 cycles at 0.05 and 0.1 A g^−1,respectively,demonstrating the applicability of the Co-NC anode for KIBs.
基金supported by the National Natural Science Foundation of China (21972048, 21802046)the Natural Science Foundation of Guangdong Province (Nos. 2019A1515011138, 2017A030313090, 2017A030310086, 2018A0303130018)。
文摘Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications.
基金supported by the National Natural Science Foundation of China (nos. 21771012, 22038001, 51621003)。
文摘Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP composite nanoarray using bimetallic metal-organic framework(MOF) as a self-sacrificial template.The resulting C@NiCoP exhibits superior performance for pH-universal electrocatalytic hydrogen evolution reaction(HER),particularly representing a low overpotential of 46.3 mV at 10 mA cm^(-2) and Tafel slope of 44.1 mV dec^(-1) in alkaline media.The structural characterizations combined with theoretical calculation demonstrate that tailored electronic structure from bimetal atoms and the synergistic effect with graphitized carbon layer could jointly optimize the adsorption ability of hydrogen on active sites in HER process,and enhance the electrical conductivity as well.In addition,the carbon layer served as a protecting shell also prevents highly dispersed NiCoP components from agglomeration and/or loss in harsh media,finally improving the durability.This work thus provides a new insight into optimizing activity and stability of pH-universal electrocatalysts by the nanostructural design and electronic structure modulation.
文摘A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+ethylene carbonate/diethylene carbonate|graphite cells, using an in situ X Ray diffraction (XRD) technique.The study of Li C intercalation processes of the graphitized coke reveals that there are three major types of intercalation behavior.The first is uniformly intercalated at all Li C compounds in graphitized coke heated at 2 250℃;the second is obviously staging phenomenon during intercalation for the graphitized coke heated at 2 750℃; the third is cointercalation of solvated Li ion at high potential (>0.3V) and then lithium electrochemical intercalation at lower potential for that heated at 3 000℃, resulting in the decrease of capacity and efficiency of graphite negative electrode for lithium ion secondary battery.
文摘Results of calculation of the power indicators of the ore restoration arc furnaces with the set power of 10.5 MVA workingon are given as on the self-baking also on the graphitized electrodes. It is established that despite high cost of the graphitizedelectrodes in comparison with the self-baking electrodes, power parameters much more improve. Besides, the natural power factorincreases, melting time decreases and that the most important the furnace turns out compact, convenient for service, building of thegraphitized electrodes is carried out for a small period, and also the number of service personnel is reduced. We propose a newdesign scheme of low-voltage circuit for the arc furnace according to the scheme "a triangle on the electrodes" designed in athree-bifilar version, in which more complete symmetry is gained by means of the crosspieces forming a triangle directly at theelectrode arms. In the proposed scheme, the current-carrying tubes that have different polarity are located on the same arm that leadsto further reduction in low-voltage circuit inductance. The application of this scheme allows for reducing reactive and activeresistances of low-voltage circuits by 2.5-3 times and 15-20%, respectively, as well as for shortening the heat, reducing specificenergy consumption and increasing the installation power factor.
基金the support of the National Natural Science Foundation of China(51533008,51703194 and 21805242)the National Key R&D Program of China(2016YFA0200200)the Excellent Postdoctoral Special Fund of Zhejiang University for funding this research work。
文摘Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electrolyte.Despite the low-cost expanded graphite-triethylaminehydrochloride(EG-ET)system has been improved in cycle performance,its rate capability still remains a gap with the expensive graphene-alkylimidazoliumchloride AIB system.In this work,we treated the cheap EG appropriately through an industrial high-temperature process,employed the obtained EG3K(treated at 3000℃)cathode with AlCl_(3)-ET electrolyte,and built a novel,high-rate capability and double-cheap AIB system.The new EG3K-ET system achieved the cathode capacity of average 110 m Ah g^(-1)at 1 A g^(-1)with 18,000cycles,and retained the cathode capacity of 100 m Ah g^(-1)at 5 A g^(-1)with 27,500 cycles(fast charging of 72 s).Impressively,we demonstrated that a battery pack(EG3K-ET system,12 m Ah)had successfully driven the Model car running 100 m long.In addition,it was confirmed that the improvement of rate capability in the EG3K-ET system was mainly derived by deposition,and its capacity contribution ratio was about 53.7%.This work further promoted the application potential of the low-cost EG-ET AIB system.
基金supported by the National Natural Science Foundation of China(21776309,22122807 and 21706283)。
文摘The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.
基金supported by the Ministry of Science and Technology (2016YFA0204100)the National Natural Science Foundation of China (21573254 and 91545110)+1 种基金the Youth Innovation Promotion Association (CAS)the Sinopec China and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030103)
文摘Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed.
基金supported by the National Natural Science Foundation of China (No. 21974045)the Science and Technology Commission of Shanghai Municipality (No. 19142201100)+1 种基金the Fundamental Research Funds for the Central Universities (No. JKJ01211718)the National Key R&D Program of China (No. 2021YFF0701900)。
文摘A novel chromatography stationary phase with a quasi-graphitized carbon modified shell has been developed. Coal pitch was directly carbonized on the surface of porous silica with in-situ carbonization. The carbonized coal pitch coating exhibits some degree of graphitization with a 78 nm-thick layer on the surface of silica and a 0.5 nm-thick layer on the inner surface of the mesopores. Based on the special structure of the graphitized carbon coating, the novel stationary phase can provide multiple interactions such as hydrophobic interaction, π-π interaction and dipole-dipole interaction. The novel composite material exhibited unique separation selectivity and excellent separation efficiency for polar compounds, including imidazoles, nucleosides and pesticides. Besides, the packed column also exhibited great repeatability with the RSDs of the retention time of nucleosides between 0.07%-0.50%(n = 5). Finally, satisfied result was achieved in the separation of fullerenes on the new column, suggesting the great potential in the industrial-scale purification of fullerenes.
基金This work was financially supported by National Key R&D Program of China(2018YFA0507501)the National Natural Science Foundation of China(22074019,21425518,22004017)Shanghai Sailing Program(20YF1405300).
文摘Due to inefficient diagnostic methods,inflammatory bowel disease(IBD)normally progresses into severe complications including cancer.Highly efficient extraction and identification of metabolic fingerprints are of significance for disease surveillance.In this work,we synthesized a layered titania nanosheet doped with graphitized carbon(2D-GC-mTNS)through a simple one-step assembly process for assisting laser desorption ionization mass spectrometry(LDI-MS)for metabolite analysis.Based on the synergistic effect of graphitized carbon and mesoporous titania,2D-GC-mTNS exhibits good extraction ability including high sensitivity(<1 fmolμL−1)and great repeatability toward metabolites.A total of 996 fingerprint spectra were collected from hundreds of native urine samples(including IBD patients and healthy controls),each of which contained 1220 m/z metabolite features.Diagnostic model was further established for precise discrimination of patients from healthy controls,with high area under the curve value of 0.972 and 0.981 toward discovery cohort and validation cohort,respectively.The 2D-GC-mTNS promotes LDI-MS to be close to clinical application,with rapid speed,minimum sample consumption and free of sample pretreatment.
文摘The structural characteristics of the graphitized carbon microcrystal prepared from carbonized polyimide (PI) film were explored using X-ray diffraction technique. The experimental results show that the graphitization of the thin film was initiated by heat treatment around 2 100°C; the carbon layers of the thin film specimens heat-treated at 2 825°C and above possessed good orientation, the phenomenon of poly-phase graphitization appeared markedly, and the information of the mosaic structure of the sample was obtained; the interlayer spacing and the mosaic degree for 3 160°C heat-treated thin film samples are 0.335 45 nm and 5.4°, respectively. As far as the source of two crystal phases with a slight difference in graphitization degree is concerned, some inferences are discussed, which helps understand more about the structure of the graphitization products.
文摘Magnetically active, ordered and stable mesoporous carbons with partially graphitized networks and controllable surface wettability (PR-Fe-P123-800 and PR-Ni- P123-800) have been synthesized through direct carbonization of Fe or Ni functionalized, and ordered mesoporous polymers at 800℃, which could be synthesized from self assembly of resol (phenol/formaldehyde) with block copolymer template (P123) in presence of Fe3+ or Ni2+, and hydrothermal treatment at 200℃. PR-Fe-P123-800 and PR-Ni- P123-800 possess ordered and uniform mesopores, large BET surface areas, good stabilities, controllable surface wettability and partially graphitized framework. The above structural characteristics result in their enhanced selective adsorption property and good reusability for organic pollutants such as RhB, p-nitrophenol and n-heptane in water, which could be easily regenerated through separation under constant magnetic fields and washing with ethanol solvent. The unique magnetically active and adsorptive property found in PR-Fe-P123-800 and PR-Ni-P123-800 will be very important for them to be used as efficient absorbents for removal of various organic pollutants in water.
基金The Fundamental Research Funds for the Central Universities,HUST,Grant/Award Number:2021GCRC046The Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2022005Natural Science Foundation of Hubei Province,China,Grant/Award Number:2022CFA031。
文摘The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.
基金support from Batteries Sweden(Grant No.Vinnova-2019-00064)the Stand-Up for Energy consortium,the ISCF Faraday Challenge for the project on“Degradation of Battery Materials”(Grant No.EP/S003053/1,FIRG024)the ERC(Grant No.771777 FUN POLYSTORE).
文摘An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs.
基金supported by the National Natural Science Foundation of China(21875118,22111530112)the support from the Smart Sensing Interdisciplinary Science Center,Nankai University。
文摘Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.
基金financially supported by the Scientific and Technological Plan Projects of Guangzhou City(202103040001),P.R.Chinathe Project of Science and Technology Department of Henan Province(222102240074)the Key Research Programs of Higher Education Institutions of Henan Province(24B150009)。
文摘Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challenging.Especially when the battery is operated under high temperature,the trace water present in the electrolyte will accelerate the hydrolysis of the electrolyte and the resulting HF will further erode the interphase.In order to enhance the long-term cycling performance of graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)LIBs,herein,Tolylene-2,4-diisocyanate(TDI)additive containing lone-pair electrons is employed to formulate a novel bifunctional electrolyte aimed at eliminating H_(2)O/HF generated at elevated temperature.After 1000 cycles at 25℃,the battery incorporating the TDI-containing electrolyte exhibits an impressive capacity retention of 94%at 1 C.In contrast,the battery utilizing the blank electrolyte has a lower capacity retention of only 78%.Furthermore,after undergoing 550 cycles at 1 C under45℃,the inclusion of TDI results in a notable enhancement of capacity,increasing it from 68%to 80%.This indicates TDI has a favorable influence on the cycling performance of LIBs,especially at elevated temperatures.The analysis of the film formation mechanism suggests that the lone pair of electrons of the isocyanate group in TDI play a crucial role in inhibiting the generation of H_(2)O and HF,which leads to the formation of a thin and dense interphase.The existence of this interphase is thought to substantially enhance the cycling performance of the LIBs.This work not only improves the performance of graphite/NCM811 batteries at room temperature and high temperature by eliminating H_(2)O/HF but also presents a novel strategy for advancing functional electrolyte development.
文摘Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.
基金Bundesministerium für Bildung und Forschung,Grant/Award Numbers:03XP0138C,03XP0306C。
文摘The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.
文摘The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.