期刊文献+
共找到1,081篇文章
< 1 2 55 >
每页显示 20 50 100
Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis
1
作者 Zhihao Zheng Mingzhuang Xie +5 位作者 Guoqing Yu Zegang Wu Jingjing Zhong Yi Wang Hongliang Zhao Fengqin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2466-2475,共10页
Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th... Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC. 展开更多
关键词 graphitized spent carbon cathode hazardous solid waste flotation acid leaching lithium-ion batteries
下载PDF
Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen-Doped Graphitized Carbon for Fast and Durable Potassium Storage 被引量:7
2
作者 Xiaodong Shi Zhenming Xu +5 位作者 Cheng Han Runze Shi Xianwen Wu Bingan Lu Jiang Zhou Shuquan Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期1-12,共12页
Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting ... Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting its practical applicability.Herein,we propose a rational strategy involving a Prussian blue analogue-derived graphitized carbon anode with fast and durable potassium storage capability,which is constructed by encapsulating cobalt nanoparticles in nitrogen-doped graphitized carbon(Co-NC).Both experimental and theoretical results show that N-doping effectively promotes the uniform dispersion of cobalt nanoparticles in the carbon matrix through Co-N bonds.Moreover,the cobalt nanoparticles and strong Co-N bonds synergistically form a threedimensional conductive network,increase the number of adsorption sites,and reduce the diffusion energy barrier,thereby facilitating the adsorption and the diffusion kinetics.These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh g^−1 after 100 and 300 cycles at 0.05 and 0.1 A g^−1,respectively,demonstrating the applicability of the Co-NC anode for KIBs. 展开更多
关键词 Cobalt nanoparticles Nitrogen-doped graphitized carbon Co-N bonds Cycling stability Potassium-ion batteries
下载PDF
FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer 被引量:6
3
作者 Sibo Chen Yun Hau Ng +6 位作者 Jihai Liao Qiongzhi Gao Siyuan Yang Feng Peng Xinhua Zhong Yueping Fang Shengsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期92-101,I0004,共11页
Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as p... Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications. 展开更多
关键词 FeCo alloy nanoparticles COCATALYST N-doped graphitized carbon g-C3N4 Visible light Hydrogen evolution
下载PDF
Encapsulation of bimetallic phosphides into graphitized carbon for pH-universal hydrogen evolution reaction 被引量:1
4
作者 Jian Zhou Yibo Dou +3 位作者 Tao He Xiang-Jing Kong Lin-Hua Xie Jian-Rong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期253-261,I0005,共10页
Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP compo... Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP composite nanoarray using bimetallic metal-organic framework(MOF) as a self-sacrificial template.The resulting C@NiCoP exhibits superior performance for pH-universal electrocatalytic hydrogen evolution reaction(HER),particularly representing a low overpotential of 46.3 mV at 10 mA cm^(-2) and Tafel slope of 44.1 mV dec^(-1) in alkaline media.The structural characterizations combined with theoretical calculation demonstrate that tailored electronic structure from bimetal atoms and the synergistic effect with graphitized carbon layer could jointly optimize the adsorption ability of hydrogen on active sites in HER process,and enhance the electrical conductivity as well.In addition,the carbon layer served as a protecting shell also prevents highly dispersed NiCoP components from agglomeration and/or loss in harsh media,finally improving the durability.This work thus provides a new insight into optimizing activity and stability of pH-universal electrocatalysts by the nanostructural design and electronic structure modulation. 展开更多
关键词 Bimetallic phosphides graphitized carbon Hydrogen evolution reaction MOF template Electronic structure
下载PDF
Intercalation mechanisms of lithium into graphitized needle cokes
5
作者 苏玉长 尹志民 徐仲榆 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期551-554,共4页
A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+eth... A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+ethylene carbonate/diethylene carbonate|graphite cells, using an in situ X Ray diffraction (XRD) technique.The study of Li C intercalation processes of the graphitized coke reveals that there are three major types of intercalation behavior.The first is uniformly intercalated at all Li C compounds in graphitized coke heated at 2 250℃;the second is obviously staging phenomenon during intercalation for the graphitized coke heated at 2 750℃; the third is cointercalation of solvated Li ion at high potential (>0.3V) and then lithium electrochemical intercalation at lower potential for that heated at 3 000℃, resulting in the decrease of capacity and efficiency of graphite negative electrode for lithium ion secondary battery. 展开更多
关键词 needle coke graphitized INTERCALATION
下载PDF
Analysis of the Parameters of the Ore RestorationFurnaces for Equal Power on the Shelf-Baking andGraphitized Electrodes
6
作者 Vladimir Kldiashvili Tamaz Natriashvili +1 位作者 Slava Mebonia Aleksandre Shermazanashvili 《Journal of Energy and Power Engineering》 2016年第12期786-791,共6页
Results of calculation of the power indicators of the ore restoration arc furnaces with the set power of 10.5 MVA workingon are given as on the self-baking also on the graphitized electrodes. It is established that de... Results of calculation of the power indicators of the ore restoration arc furnaces with the set power of 10.5 MVA workingon are given as on the self-baking also on the graphitized electrodes. It is established that despite high cost of the graphitizedelectrodes in comparison with the self-baking electrodes, power parameters much more improve. Besides, the natural power factorincreases, melting time decreases and that the most important the furnace turns out compact, convenient for service, building of thegraphitized electrodes is carried out for a small period, and also the number of service personnel is reduced. We propose a newdesign scheme of low-voltage circuit for the arc furnace according to the scheme "a triangle on the electrodes" designed in athree-bifilar version, in which more complete symmetry is gained by means of the crosspieces forming a triangle directly at theelectrode arms. In the proposed scheme, the current-carrying tubes that have different polarity are located on the same arm that leadsto further reduction in low-voltage circuit inductance. The application of this scheme allows for reducing reactive and activeresistances of low-voltage circuits by 2.5-3 times and 15-20%, respectively, as well as for shortening the heat, reducing specificenergy consumption and increasing the installation power factor. 展开更多
关键词 Power indicators ORE restoration arc furnace self-baking graphitized electrode low-voltage circuit reactive resistance bifilar arrangement of tires.
下载PDF
A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability 被引量:2
7
作者 Xiaozhong Dong Hao Chen +4 位作者 Haiwen Lai Liyong Wang Jiaqing Wang Wenzhang Fang Chao Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期38-44,I0002,共8页
Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electro... Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electrolyte.Despite the low-cost expanded graphite-triethylaminehydrochloride(EG-ET)system has been improved in cycle performance,its rate capability still remains a gap with the expensive graphene-alkylimidazoliumchloride AIB system.In this work,we treated the cheap EG appropriately through an industrial high-temperature process,employed the obtained EG3K(treated at 3000℃)cathode with AlCl_(3)-ET electrolyte,and built a novel,high-rate capability and double-cheap AIB system.The new EG3K-ET system achieved the cathode capacity of average 110 m Ah g^(-1)at 1 A g^(-1)with 18,000cycles,and retained the cathode capacity of 100 m Ah g^(-1)at 5 A g^(-1)with 27,500 cycles(fast charging of 72 s).Impressively,we demonstrated that a battery pack(EG3K-ET system,12 m Ah)had successfully driven the Model car running 100 m long.In addition,it was confirmed that the improvement of rate capability in the EG3K-ET system was mainly derived by deposition,and its capacity contribution ratio was about 53.7%.This work further promoted the application potential of the low-cost EG-ET AIB system. 展开更多
关键词 Aluminum-ion battery Expanded graphite Triethylamine hydrochloride
下载PDF
Boosting of reversible capacity delivered at a low voltage below 0.5 V in mildly expanded graphitized needle coke anode for a high-energy lithium ion battery 被引量:2
8
作者 Dong Sun Lu Zhao +10 位作者 Zhihua Xiao Kai Zhao Rundan Lin Hongmei Song Xilu Zhang Xinlong Ma Chong Peng Xiaoqiao Huang Xingxun Li Jinsen Gao Chunming Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期100-110,I0004,共12页
The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially... The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs. 展开更多
关键词 Graphited needle coke Mildly expanded Interlayer spacing Low voltage platform Lithium ion battery
下载PDF
Graphitized nanocarbon-supported metal catalysts:synthesis,properties,and applications in heterogeneous catalysis 被引量:2
9
作者 黄飞 刘洪阳 苏党生 《Science China Materials》 SCIE EI CSCD 2017年第12期1149-1167,共19页
Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent the... Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed. 展开更多
关键词 nanocarbon materials graphitized carbon supports metal catalysts hetergeneous catalysis
原文传递
In-situ carbonizing of coal pitch on the surface of silica sphere as quasi-graphitized carbon stationary phase for liquid chromatography
10
作者 Sen Xu Zhihua Zhong +2 位作者 Yu Wang Lingyi Zhang Weibing Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期219-221,共3页
A novel chromatography stationary phase with a quasi-graphitized carbon modified shell has been developed. Coal pitch was directly carbonized on the surface of porous silica with in-situ carbonization. The carbonized ... A novel chromatography stationary phase with a quasi-graphitized carbon modified shell has been developed. Coal pitch was directly carbonized on the surface of porous silica with in-situ carbonization. The carbonized coal pitch coating exhibits some degree of graphitization with a 78 nm-thick layer on the surface of silica and a 0.5 nm-thick layer on the inner surface of the mesopores. Based on the special structure of the graphitized carbon coating, the novel stationary phase can provide multiple interactions such as hydrophobic interaction, π-π interaction and dipole-dipole interaction. The novel composite material exhibited unique separation selectivity and excellent separation efficiency for polar compounds, including imidazoles, nucleosides and pesticides. Besides, the packed column also exhibited great repeatability with the RSDs of the retention time of nucleosides between 0.07%-0.50%(n = 5). Finally, satisfied result was achieved in the separation of fullerenes on the new column, suggesting the great potential in the industrial-scale purification of fullerenes. 展开更多
关键词 graphitized carbon Coal pitch High performance liquid chromatography Chromatographic separation FULLERENES
原文传递
Metabolic Molecular Diagnosis of Inflammatory Bowel Disease by Synergistical Promotion of Layered Titania Nanosheets with Graphitized Carbon
11
作者 Xufang Hu Yang Zhang +2 位作者 Chunhui Deng Nianrong Sun Hao Wu 《Phenomics》 2022年第4期261-271,共11页
Due to inefficient diagnostic methods,inflammatory bowel disease(IBD)normally progresses into severe complications including cancer.Highly efficient extraction and identification of metabolic fingerprints are of signi... Due to inefficient diagnostic methods,inflammatory bowel disease(IBD)normally progresses into severe complications including cancer.Highly efficient extraction and identification of metabolic fingerprints are of significance for disease surveillance.In this work,we synthesized a layered titania nanosheet doped with graphitized carbon(2D-GC-mTNS)through a simple one-step assembly process for assisting laser desorption ionization mass spectrometry(LDI-MS)for metabolite analysis.Based on the synergistic effect of graphitized carbon and mesoporous titania,2D-GC-mTNS exhibits good extraction ability including high sensitivity(<1 fmolμL−1)and great repeatability toward metabolites.A total of 996 fingerprint spectra were collected from hundreds of native urine samples(including IBD patients and healthy controls),each of which contained 1220 m/z metabolite features.Diagnostic model was further established for precise discrimination of patients from healthy controls,with high area under the curve value of 0.972 and 0.981 toward discovery cohort and validation cohort,respectively.The 2D-GC-mTNS promotes LDI-MS to be close to clinical application,with rapid speed,minimum sample consumption and free of sample pretreatment. 展开更多
关键词 graphitized carbon Mesoporous titania METABOLITE Mass spectrometry Machine learning Diagnosis
原文传递
Study on the structural characteristics of graphitized carbon microcrystal prepared from PI film using X-ray diffraction technique
12
作者 赵根祥 钱树安 陶琨 《Science China(Technological Sciences)》 SCIE EI CAS 1998年第1期1-5,共5页
The structural characteristics of the graphitized carbon microcrystal prepared from carbonized polyimide (PI) film were explored using X-ray diffraction technique. The experimental results show that the graphitization... The structural characteristics of the graphitized carbon microcrystal prepared from carbonized polyimide (PI) film were explored using X-ray diffraction technique. The experimental results show that the graphitization of the thin film was initiated by heat treatment around 2 100°C; the carbon layers of the thin film specimens heat-treated at 2 825°C and above possessed good orientation, the phenomenon of poly-phase graphitization appeared markedly, and the information of the mosaic structure of the sample was obtained; the interlayer spacing and the mosaic degree for 3 160°C heat-treated thin film samples are 0.335 45 nm and 5.4°, respectively. As far as the source of two crystal phases with a slight difference in graphitization degree is concerned, some inferences are discussed, which helps understand more about the structure of the graphitization products. 展开更多
关键词 PI FILM GRAPHITIZATION CARBON MICROCRYSTAL MOSAIC structure X-ray diffraction.
原文传递
Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water
13
作者 Bin ZHANG Chen LIU +1 位作者 Weiping KONG Chenze QI 《Frontiers of Materials Science》 SCIE CSCD 2016年第2期147-156,共10页
Magnetically active, ordered and stable mesoporous carbons with partially graphitized networks and controllable surface wettability (PR-Fe-P123-800 and PR-Ni- P123-800) have been synthesized through direct carboniza... Magnetically active, ordered and stable mesoporous carbons with partially graphitized networks and controllable surface wettability (PR-Fe-P123-800 and PR-Ni- P123-800) have been synthesized through direct carbonization of Fe or Ni functionalized, and ordered mesoporous polymers at 800℃, which could be synthesized from self assembly of resol (phenol/formaldehyde) with block copolymer template (P123) in presence of Fe3+ or Ni2+, and hydrothermal treatment at 200℃. PR-Fe-P123-800 and PR-Ni- P123-800 possess ordered and uniform mesopores, large BET surface areas, good stabilities, controllable surface wettability and partially graphitized framework. The above structural characteristics result in their enhanced selective adsorption property and good reusability for organic pollutants such as RhB, p-nitrophenol and n-heptane in water, which could be easily regenerated through separation under constant magnetic fields and washing with ethanol solvent. The unique magnetically active and adsorptive property found in PR-Fe-P123-800 and PR-Ni-P123-800 will be very important for them to be used as efficient absorbents for removal of various organic pollutants in water. 展开更多
关键词 magnetic separation mesoporous carbon GRAPHITIZATION ADSORPTION hightemperature synthesis
原文传递
Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation 被引量:1
14
作者 Zhiheng Cheng Zhiling Luo +7 位作者 Hao Zhang Wuxing Zhang Wang Gao Yang Zhang Long Qie Yonggang Yao Yunhui Huang Kun Kelvin Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期91-103,共13页
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte... The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture. 展开更多
关键词 battery recycling spent graphite targeted regeneration upcycling graphite
下载PDF
Charting the course to solid-state dual-ion batteries 被引量:1
15
作者 Habtom D.Asfaw Antonia Kotronia +2 位作者 Nuria Garcia-Araez Kristina Edström Daniel Brandell 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期132-177,共46页
An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from ... An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs. 展开更多
关键词 anion intercalation concentrated electrolytes dual-ion battery graphite ionic liquids polymer electrolyte
下载PDF
Engineering g-C_(3)N_(4)based materials for advanced photocatalysis:Recent advances 被引量:1
16
作者 Xin-Lian Song Lei Chen +2 位作者 Li-Jiao Gao Jin-Tao Ren Zhong-Yong Yuan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期166-197,共32页
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti... Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications. 展开更多
关键词 Graphitic carbon nitride g-C_(3)N_(4) Design strategies PHOTOCATALYSIS PHOTOCATALYSTS Reaction mechanism
下载PDF
Eliminating H_(2)O/HF and regulating interphase with bifunctional tolylene-2,4-diisocyanate(TDI)additive for long life Li-ion battery 被引量:2
17
作者 Xueyi Zeng Xiang Gao +8 位作者 Peiqi Zhou Haijia Li Xin He Weizhen Fan Chaojun Fan Tianxiang Yang Zhen Ma Xiaoyang Zhao Junmin Nan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期519-528,I0011,共11页
Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challengi... Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challenging.Especially when the battery is operated under high temperature,the trace water present in the electrolyte will accelerate the hydrolysis of the electrolyte and the resulting HF will further erode the interphase.In order to enhance the long-term cycling performance of graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)LIBs,herein,Tolylene-2,4-diisocyanate(TDI)additive containing lone-pair electrons is employed to formulate a novel bifunctional electrolyte aimed at eliminating H_(2)O/HF generated at elevated temperature.After 1000 cycles at 25℃,the battery incorporating the TDI-containing electrolyte exhibits an impressive capacity retention of 94%at 1 C.In contrast,the battery utilizing the blank electrolyte has a lower capacity retention of only 78%.Furthermore,after undergoing 550 cycles at 1 C under45℃,the inclusion of TDI results in a notable enhancement of capacity,increasing it from 68%to 80%.This indicates TDI has a favorable influence on the cycling performance of LIBs,especially at elevated temperatures.The analysis of the film formation mechanism suggests that the lone pair of electrons of the isocyanate group in TDI play a crucial role in inhibiting the generation of H_(2)O and HF,which leads to the formation of a thin and dense interphase.The existence of this interphase is thought to substantially enhance the cycling performance of the LIBs.This work not only improves the performance of graphite/NCM811 batteries at room temperature and high temperature by eliminating H_(2)O/HF but also presents a novel strategy for advancing functional electrolyte development. 展开更多
关键词 Graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery Tolylene-2 4-diisocyanate Long-cycling performance H_(2)O/HF eliminated additive
下载PDF
Semi-quantitative analysis of the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy
18
作者 LIU Yue CHANG Sheng-kai +3 位作者 SU Zhan-peng HUANG Zu-jian QIN Ji YANG Jian-xiao 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期668-680,共13页
Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties... Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms. 展开更多
关键词 Mesophase pitch Carbon foams RAMAN FTIR GRAPHITIZATION
下载PDF
Recycled graphite for more sustainable lithium-ion batteries
19
作者 Mayokun Olutogun Anna Vanderbruggen +5 位作者 Christoph Frey Martin Rudolph Dominic Bresser Stefano Passerini Helmholtz Institute Ulm(HIU) Ulm 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期15-24,共10页
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc... The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite. 展开更多
关键词 ANODE GRAPHITE lithium-ion battery RECYCLING SUSTAINABILITY
下载PDF
Novel multifunctional epoxy based graphitic carbon nitride/silanized TiO_(2)nanocomposite as protective coatings for steel surface against corrosion and flame in the shipping industry
20
作者 XAVIER Joseph Raj 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3394-3422,共29页
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ... The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry. 展开更多
关键词 graphitic carbon nitride nanocomposites flame retardant coating corrosion functional materials
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部